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Abstract 
 

The cognitive load of a user refers to the amount of mental demand imposed on the 

user when performing a particular task. Estimating the cognitive load (CL) level of the 

users is necessary to adjust the workload imposed on them accordingly in order to 

improve task performance. The current speech based CL classification systems are not 

adequate for commercial use due to their low performance particularly in noisy 

environments. This thesis proposes many techniques to improve the performance of the 

speech based cognitive load classification system in both clean and noisy conditions.  

This thesis analyses and presents the effectiveness of speech features such as spectral 

centroid frequency (SCF) and spectral centroid amplitude (SCA) for CL classification. 

Sub-systems based on SCF and SCA features were developed and fused with the 

traditional Mel frequency cepstral coefficients (MFCC) based system, producing an 8.9% 

and 31.5% relative error rate reduction respectively when compared to the MFCC-based 

system alone. The Stroop test corpus was used in these experiments. 

The investigation into cognitive load information in the form of spectral distribution 

in different subbands shows that the information distributed in the low frequency subband 

is significantly higher than the high frequency subband. Two different methods are 

proposed to utilize this finding. The first method, called the multi-band approach, uses a 

weighting scheme to emphasize the speech features in low frequency subbands. The 

cognitive load classification accuracy of this approach is shown to be higher than a 

system based on a non-weighting scheme. The second method is to design an effective 

filterbank based on the spectral distribution of cognitive load information using the 

Kullback-Leibler distance measure. It is shown that the designed filterbank consistently 

provides higher classification accuracies than other existing filterbanks such as mel, Bark, 

and equivalent rectangular bandwidth.  

A discrete cosine transform based speech enhancement technique is proposed in 

order to increase the robustness of the CL classification system and found to be more 

suitable than other methods investigated. This proposed method provides a 3.0% average 

relative error rate reduction for the seven types of noise and five levels of SNR used. In 

particular, it provides a maximum of 7.5% relative error rate reduction for the F16 noise 

(in NOISEX-92 database) at 20 dB SNR.  

 Keywords: Automatic cognitive load classification, cognitive load information 

distribution, filterbank designing, multi-band, weighting, speech enhancement.  
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Chapter 1: Introduction 
 
 

In modern society, people are faced with working environments that are increasingly 

demanding. Task environments are becoming more complex and time constraints are 

increasing. In environments such as a call center and when driving a vehicle, users often 

need to manage a large amount of information and can easily become overloaded. In other 

words, they are unable to process all relevant information necessary to perform the task at 

hand, which can lead to unproductive or dangerous situations. It is therefore desirable to 

design a system to extract data related to the workload of the users. This data can then be 

used to respond intelligently and adaptively based on user information processing 

capacity in order to avoid an overload situation and improve task performance.  

The cognitive load (CL) of a person refers to the amount of mental demand imposed 

on that person when performing a particular task. It reflects the amount of pressure the 

person experiences in completing a task. Cognitive load has been closely associated with 

the limited capacity of the human working memory. It is known that the amount of 

working memory resources devoted to a particular task greatly affects the task 

performance. In particular, task performance has been shown to degrade by either 

overload or underload. This can be attributed to task demands that exceed the available 

cognitive capacity in the former case, or the inadequate allocation of cognitive resources 

in the latter [1]. As a result, it is necessary to measure a user’s cognitive load, or classify 

it along an ordinal scale, in order to adjust the workload so that the load experienced is 

maintained within an optimal range for maximum productivity.  

 There are many potential applications for a cognitive load measurement system. For 

example, transportation vehicles are equipped with an increasing number of 

functions and services, which drivers are required to understand and operate. 

Consequently, drivers are subjected to an increasing amount of information such as 

navigation, traffic information, news, speed limit warnings and parking guidance. 

This information can be distracting and might place drivers at a very high workload 

which will have an adverse effect on their driving ability and general road safety. In 

this respect, real-time measurement of the driver’s cognitive load will potentially be 

very useful in the design and development of intelligent in-vehicle systems. Such 

systems can adapt to a driver’s CL level by controlling the amount of information 

displayed to them, in order to provide them with the best level of driving support 
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and thus reduce the possibility of an overload situation. For instance, if the driver’s 

load level is very high, the system can stop playing the news to reduce distraction 

for the driver. It can also play a warning message or recommend the driver to stop 

and revive if the high load level might not allow them to continue driving safely.    

 In computer-based learning, where learning materials are presented by a computer, 

a student will acquire knowledge through the methods that are most conductive for 

individual learning such as video, audio, graphics and animation. If student’s CL 

level can be measured in real-time, the computer can adapt to it by changing the 

presentation of the learning materials to ensure that the student’s understanding is 

maximized. For instance, if the student’s cognitive load level is too high, implying 

that they find it difficult to understand the material presented, the computer can 

provide supplementary information and examples to help and support them. It can 

also reduce the presentation speed of the material so that the student will have 

enough time to process the material better.  

 In a call center, the agents are often required to manage a high volume of complex 

information when answering customer queries and providing customer support. As 

such, they are under high cognitive load. In cases when the agents’ level of 

cognitive load is very high, they may communicate with the customer ineffectively 

which may result in the customer dissatisfaction. If the agents’ cognitive load level 

can be measured, the agent support system can reduce or eliminate such problems 

by transferring phone calls from agents with very high CL to agents with lower CL 

and hence improve overall customer satisfaction.  

Due to potential use in real-world applications, cognitive load measurement has been 

an active research area in the last couple of decades. Many methods have been proposed 

to measure the cognitive load level, including methods based on physiological technique, 

behavioral technique, performance technique, and self-reported subjective ranking of the 

experienced load level. The method based on speech features that represent cognitive load 

can be considered as belonging to either physiological or behavioral techniques (see 

Section 2.3), has attracted the attention of many researchers in the last few years [2-5]. 

This is because speech data exists in many real-life tasks e.g. telephone conversations and 

voice control systems, and can be easily collected in non-intrusive and inexpensive ways. 

In addition, Yin et al. has shown that the cognitive load level can be measured in real-

time using frame-based acoustic speech features [5].  
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1.1 Speech based cognitive load classification  

Speech is a natural form of communication for human beings. Although the main 

objective of speech is to convey linguistic information, this is not the only information 

conveyed by speech. Other information including speaker identity and mental state 

related information such as cognitive load is also conveyed in speech [5]. Speech is an 

acoustic signal, generated by the airflow from the lungs considered to be the voice source 

which then passes through to the pharynx and the oral and nasal cavities, collectively 

known as the vocal tract filter. The parameters of the voice source and the vocal tract 

filter vary according to the content of the utterance to be pronounced as well as the mental 

state of the speaker. Speech processing research can typically be regarded as the effort to 

determine the parameters which best convey the information in speech, and then apply 

that information in a practical system.  

As mentioned before, cognitive load characterizes the mental workload of a person. It 

has been shown that the physiological consequences of the mental workload include 

respiratory changes e.g. increased respiration rate, irregular breathing and increased 

muscle tension of the vocal cords and the vocal tract [6]. Increased muscle tension of the 

speech production organs can adversely affect the quality of speech. This suggests that 

the cognitive load information can be conveyed in speech, which in turn can be 

characterized by the parameters of the different components of the human speech 

production system. This suggests the existence of patterns in speech which characterize 

the load level being conveyed. These patterns may exist in many types of speech features 

such as prosodic and acoustic features.   

The purpose of an automatic speech-based CL classification system is to extract 

features that are representative of the patterns in speech that characterize the cognitive 

state of the speaker and then automatically determine the speaker’s load level using 

pattern classification techniques. These techniques are used to make decisions about the 

cognitive load level, based on the chosen features.  

The usefulness of cognitive load classification for industrial applications depends on a 

number of factors. Amongst them, the classification accuracy is a very crucial factor. 

Since the measured load level is used to adjust the amount of workload imposed on the 

user, an inaccurate measurement would result in an inappropriate adjustment of workload, 

and hence degrade the performance of the system. For example, if the actual load level of 

the user is very high, the workload imposed should be reduced in order to avoid an 

overload situation. However, should an inaccurate measurement of the level indicate a 
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low load level, the system would increase the amount of workload imposed on the user 

which can generate a dangerous situation. Furthermore, the cognitive load level is usually 

measured in working environments such as in airports, over telephone channels, and in 

cars where speech is corrupted by background noise. This can significantly degrade the 

performance of the system. These factors suggest that it is crucial to develop a cognitive 

load classification system that performs well, especially in noisy conditions.  

1.2 Thesis objective 

The principle objective of this thesis is to propose techniques to improve the 

performance of an existing automatic cognitive load classification system based on 

speech features and to increase the robustness of the system under noisy conditions. This 

objective may be expressed in terms of the following aims: 

 To investigate the use of various speech features for an automatic CL 

classification system, specifically those which are complementary to the Mel 

frequency cepstral coefficients (MFCC) feature used in the existing systems.  

 To investigate the spectral distribution of cognitive load information across 

different frequency bands.  

 To propose techniques to improve the performance of the automatic CL 

classification system by emphasizing the cognitive load information in the 

frequency region where it is concentrated. One technique is to develop the system 

based on subband speech features, called a multi-band system, and then employ 

weighting schemes to emphasize the subband which contains the most CL 

information. Another technique is to design effective filterbank to extract spectral 

features specifically for CL classification by increasing the frequency resolution in 

the region that contains most of the cognitive load information.  

 To introduce speech enhancement methods that will improve the quality of speech 

in noisy conditions in order to make the cognitive load classification system more 

robust to noise.  

1.3 Organization of the thesis 

The remainder of the thesis is organized as follows: 

 

Chapter 2: provides an overview of cognitive load and cognitive load theory, the 

benefits of CL measurement, the existing techniques used to measure CL and the 
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effect of the variation of load level on speech features. This is followed by a 

review of speech features that have been used in cognitive load classification and 

an overview of the classification system itself. Finally, it describes the two 

cognitive load corpora used in this thesis.  

 

Chapter 3: begins with a description of the source-filter model of human speech 

production system. This is followed by the implementation of a human listening 

test to investigate the types of speech cues that are used by humans to identify 

different cognitive load levels. It then studies the effectiveness of various speech 

features related to the source only, the filter only or both of these components for 

CL classification. This study aims to provide a method for designing an effective 

front-end for the classification system and evaluate which component of the 

source-filter model contributes more to the characterization of cognitive load. 

Finally, the effectiveness of the spectral centroid frequency and spectral centroid 

amplitude features for cognitive load classification and their ability to complement 

the existing MFCC system are analyzed and presented.  

 

Chapter 4: investigates the performance of different weighting schemes for the 

multi-band cognitive load classification system. It then studies the effectiveness of 

the multi-band approach and compares it with the traditional full-band approach. 

The studies in this chapter are carried out in both clean and noisy conditions.  

 

Chapter 5: studies the effect of varying the spectral feature dimensions on the 

performance of the classification system in order to find the optimum feature 

vector dimension producing the highest system classification accuracy. It then 

investigates the distribution of cognitive load information across different 

subbands. Finally, this chapter designs effective filterbanks to extract spectral 

features specifically for cognitive load classification, based on the distribution of 

cognitive load information. The number of filters in the designed filterbank is 

chosen in order to optimize the dimension of the spectral feature vector.  

 

Chapter 6: proposes two novel speech enhancement methods (based on Kalman 

filtering and empirical mode decomposition) and one approach to improve an 

existing speech enhancement method based on the discrete cosine transform. The 
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effectiveness of these methods, in terms of perceptual evaluation of speech quality 

(PESQ), is investigated and compared to other traditional speech enhancement 

methods. In addition, their computation complexities are analyzed. The method 

providing the best compromise between the quality of enhanced speech and 

computation complexity will be chosen in order to improve the quality of speech 

in noisy conditions and make the system more robust to noise. 

 

Chapter 7: summarizes the contributions of the thesis. Finally, it presents 

possible future research avenues that can be investigated following the results 

shown in this thesis.  

1.4 Major contributions  

The major contributions of this thesis are the development of several techniques to 

improve the performance of automatic speech-based cognitive load classification systems 

in both clean and noisy conditions. These major contributions, together with other 

contributions, are summarized below: 

 An investigation of the effectiveness of speech features related to either the voice-

source or the vocal tract filter for CL classification. It was found that although the 

features relating to the vocal tract filter are more effective, both types of feature 

are effective for classifying cognitive load. 

 The human listening test carried out on a subset of the Stroop test corpus indicated 

that the breath pattern, speech rate, the use of fillers, and intonation are among the 

most important cues that humans use to recognize cognitive load level.   

 The spectral centroid features, namely spectral centroid frequency (SCF) and 

spectral centroid amplitude (SCA), have been investigated for CL classification. It 

has been shown that they complement the traditional MFCC feature.  

 The effect of varying the dimensionality of SCF, SCA and MFCC features to the 

classification system accuracy was investigated and the optimum dimensionality 

of the feature vectors was found.   

 In the investigation of the distribution of cognitive load information in different 

frequency bands, it was found that cognitive load information is mainly 

concentrated in the frequency region (0-1.5) kHz, with the maximum amount of 

information found in (400-1000) Hz. Furthermore, beyond 1 kHz, the amount of 
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the information contained in individual subband decreases with respect to 

frequency.  

 Two filterbanks were designed to extract the spectral features specifically for 

cognitive load classification based on the distribution of cognitive load 

information. It was shown that the designed filterbanks are more effective than 

existing filterbanks such as mel, Bark and equivalent rectangular bandwidth.  

 In the investigation of the accuracy weighting and signal to noise ratio weighting 

schemes for a cognitive load classification system based on a likelihood 

combination multi-band approach, it was found that the accuracy weighting 

scheme is more effective than the signal to noise ratio and non-weighting 

schemes.  

 The effectiveness of the multi-band approach for classification was investigated. It 

was found that the multi-band approach produced a higher classification accuracy 

for the system than the traditional full-band approach.  

 Two novel speech enhancement methods were proposed based on two different 

techniques, namely Kalman filtering and empirical mode decomposition. In 

addition to this, a separate approach was proposed to improve the effectiveness of 

an existing speech enhancement method based on the discrete cosine transform 

(DCT). The proposed improved speech enhancement method based on the DCT 

was shown to improve the accuracy of the classification system under noisy 

condtions.  
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2. Chapter 2: Automatic cognitive load  

classification system 
 

 

 

 

 

 

 

 

 

This chapter initially presents the basic concepts of cognitive load and the necessity to 

measure it. This is then followed by an overview of some of the methods currently used 

to measure cognitive load. A discussion about the impact of cognitive load variation on 

different aspects of speech is presented. This chapter then overviews the speech features 

that have been used for CL classification and describes the architecture of the automatic 

speech-based cognitive load classification system used in this thesis. Several components 

of the system e.g. feature extraction, normalization and classification are explained. 

Finally, it concludes with a description of the two cognitive load speech databases used in 

this thesis.  

2.1 Cognitive load 

2.1.1 Working memory and its limitation 

Working memory is the space in human memory where active cognitive processing 

occurs [7]. Cognitive processing is defined as the procedures and methods that “control, 

regulate and actively maintain task-related information” [8]. It is widely known that the 

capacity of working memory is limited. For instance, early investigations showed that 

working memory can only hold about seven items of information at a time [9] but recent 

studies indicate a limit of four items [10]. In addition, information is usually processed at 

the working memory through organizing, contrasting or comparing, rather than just being 

held [7]. This further reduces the number of items of information that humans are able to 

deal with to two or three items. Furthermore, working memory resources are required if 

there is any interaction between the items held in working memory [11].  
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2.1.2 Cognitive load theory 

Cognitive load refers to the metal demand imposed on a user’s cognitive system, or 

working memory, while completing a task. Cognitive load theory has been developed by 

education psychologists in order to design effective instructional strategies which take 

into account the limitations of human cognitive resources. It is built upon the philosophy 

of learning and its relationship with the human cognitive system. The basic principles of 

this theory are based on the assumption that working memory is very limited and a 

separate long-term memory exists that is virtually unlimited. The learning process 

involves the construction of schema at the working memory which is then transferred to 

long-term memory. Schema are hierarchical information networks held in long-term 

memory that serve as internal, mental representations of the world [12]. If the capacity of 

working memory is exceeded by the demands of the learning task, learning will be 

ineffective as the schema cannot be constructed. It is therefore crucial to maintain the 

level of cognitive load within a suitable range to achieve effective learning and optimum 

performance.  

Learning performance can be degraded by a task with very high or very low levels of 

cognitive load. Very high levels of cognitive load can degrade performance because the 

subject does not have sufficient resources to perform the task well. Conversely, very low 

levels of CL can degrade performance as the subject’s cognitive resources are not 

engaged in an optimal way [1, 13]. Hence, the effective use of working memory is crucial 

in achieving optimum learning performance. The aim of cognitive load theory is to 

provide instructional strategies and learning activities to manage subjects’ cognitive load, 

such that the use of their working memory resources are optimized [7, 14].  

2.1.3 Types of cognitive load  

There are three different types of cognitive load: intrinsic, extraneous and germane 

loads. Intrinsic load refers to the cognitive load created by the structure and complexity of 

the learning material. The complexity of any given content depends on the level of item 

or complex interactivity of the material, which is the amount of informational units a 

learner needs to hold in working memory to comprehend information. This type of load 

cannot be changed by instruction strategies. The extraneous load is created by the 

presentation of the task and can be changed by modifying the presentation format. An 

improved task design can reduce the extra load on working memory. For instance, 

instructional materials addressing the problem of learning to swim would be more 

effective, and would produce less extraneous load if they included an appropriate graphic 
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or demo video rather than a text only description. Germane load is caused by the active 

processing of novel information and schema construction and hence is essential to the 

learning process.  

From a cognitive load perspective, intrinsic, extraneous and germane loads are 

additive [1]. Therefore it is important to maintain the sum of these loads i.e. the total 

cognitive load associated with an instructional design, within the limit of working 

memory for learning to be effective. An illustration of three types of cognitive load on 

working memory is given in Figure 2.1.  

 

Figure 2.1: An illustration of three types of CL on working memory. 

 

Among the three types of cognitive load, it is crucial to ensure that the intrinsic and 

extraneous loads do not exceed the capacity of working memory. However, the germane 

load is encouraged. A subject’s learning and understanding of the task will be enhanced 

by the large available resource of working memory. For tasks with high intrinsic load, it 

is necessary for a task designer to present the material effectively in order to keep the 

extraneous load as low as possible to reserve resources for the germane load. However, 

this may not be very important for a low intrinsic load task as there is plenty of working 

memory space available for both extraneous and germane loads [15].  

Since germane load is necessary for schema construction, which promotes learning 

and understanding, it can be said that high cognitive load itself does not negatively affect 

the learning process and task performance. It is high extraneous load that is unnecessary 

for learning that can degrade the task performance. The objective of cognitive load theory 

is to design instructional strategies that minimize extraneous CL and promote germane 

load so that the user’s learning and task performance can be maximized. This can be done 

by measuring users’ experienced cognitive load and then adapting the user interface and 

task presentation as per their current cognitive load. This helps to avoid an overload 

situation where the task demand exceeds the subject’s working memory or an underload 

situation where the subject is not being involved in the task optimally.  
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2.2 Overview of cognitive load measurement    
Researchers have been attracted to the study of cognitive load measurement for the 

last couple of decades due to its important role in designing adaptive user interfaces. 

Numerous methods employing different approaches and measures have been introduced 

for cognitive load measurement. These methods can be categorized as subjective or self-

reporting, physiological, performance-based or behavioral methods [7, 16].  

2.2.1 Subjective or self-reporting measures 

The subjective or self-reporting measures are estimated by asking users to describe in 

detail their own perceived load level as induced by the task. They reflect a user’s 

perception of cognitive load by means of introspection. The user is required to perform a 

self-assessment by answering a set of questions immediately after completing a task.  

Subjective measures are based on the assumption that people are able to clarify their 

cognitive process and report the amount of mental effort expended to perform a task. It 

has been found that users are able to accurately estimate and report their perceived 

amount of invested mental effort on a 9-point scale [17-18]. A 7-point rating scale has 

also been used in other studies [19-20]. However, both empirical and theoretical studies 

have found that the type of scale used in subjective rating makes no difference [21-22]. 

Examples of rating scales used in subjective measures estimation are given in Figure 2.2. 

 

 
Figure 2.2: Examples of 9-point and 7-point self-report rating scales. 

 

In terms of the number of aspects of mental burden that users are required to estimate 

and report, subjective rating scales can be categorized as one of two types, either 

unidimensional or multi-dimensional. For a unidimensional scale, users are required to 

consider only one measure relating to the mental effort spent to perform the task. This 
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type of scale is simple and straight-forward for a user to complete. Rating Scale Mental 

Effort [23], the Activation scale [24], and the Overall Workload Scale [1] are typical 

examples of unidimensional scales. Unlike a unidimensional scale, multi-dimensional 

scales contain more than one measure that users are required to estimate relating to 

different aspects of mental burden. One of the most popular multidimensional scales used 

for measuring mental load is the NASA Task Load Index (NASA-TLX) [25]. This scale 

contains six eleven-point subscales, indicating different aspects of task workload, namely 

mental demand, physical demand, temporal demand, performance, effort and frustration. 

The advantage of multi-dimensional scales is that they take into account more specific 

causes for the load and thus can be more accurate for the purpose of cognitive load 

estimation. However, the disadvantage is that they rely on the ability of the user to 

accurately estimate the contribution of different ratings for the cognitive load assuming 

that users are able to clarify the source of their cognitive load. 

Although the use of subjective measures is relatively easy and cost-effective to 

estimate cognitive load, it is not suitable for implementation in real-world applications 

since it is highly intrusive and requires time and effort to complete. Furthermore, 

subjective measures suffer from lack of sensitivity as they only provide a single result for 

the entire task at completion. However, the effort spent on the task may have changed 

throughout and hence the cognitive load level of user may have varied during the task. 

Subjective measures therefore do not reflect the instantaneous cognitive load level. It is 

also very hard to compare the subjective measures of different users, as the intervals of 

the scale are unlikely to be consistent across users.       

2.2.2 Performance measures  

The performance-based methods are categorized into two techniques, namely 

primary task measurement and secondary task measurement. The primary task 

measurement are based on the user’s performance of the task being under taken and can 

include measures relating to task performance such as completion time, critical errors, 

false starts and latency to response [26-27]. The secondary task or dual-task measurement 

is based on the performance of a secondary task that is performed concurrently with the 

primary task. It has also been utilized in research to measure users’ cognitive load [7, 28-

30]. Research has found that secondary task measurement is effective for cognitive load 

measurement as it can indirectly measure the amount of working memory resources being 

used by the primary task [31]. Performing two tasks at the same time is much more 

difficult than performing either of these tasks alone. When a user is doing a dual-task, the 
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primary task has first priority when working memory resource is assigned. Therefore, the 

secondary task performance can be used as a measure of remaining resource not being 

used by the primary task [31]. The secondary task usually involves a simple activity such 

as detecting a visual or auditory signal.  

Although performance measures are essentially related to the complexity of the task 

and can be very sensitive to the increase of cognitive load, the use of them as an index of 

cognitive load has a number of disadvantages particularly because they can be unreliable 

indicators of load level. It was found in [32] that although two individuals achieve the 

same level of performance, one expends twice as much as cognitive resources as the 

other. Furthermore, it is difficult to employ these measures in real-world applications 

where users’ cognitive load level is required to be measured in real-time. It is because 

performance-based measures are based on features such as completion time and accuracy, 

which can only be determined after the task has been completed [26]. 

2.2.3 Physiological measures 

The methods used to measure cognitive load levels using physiological measures are 

based on the assumption that the fluctuation of human cognitive load level is reflected in 

physiological measures. Numerous measures have been investigated such as heart 

activity, brain activity e.g. task-evoked brain potentials, eye activity e.g. pupillary 

response [1], galvanic skin response [33]. The heart-rate measure investigated in [34] was 

found to be intrusive, invalid, and insensitive to subtle fluctuation in cognitive load. 

Pupillary response was found to be highly sensitive to fluctuating levels of cognitive load 

[1]. The effect of cognitive load variation to the pupillary response was investigated in 

[35] for a group of both young and old participants. It was found that the mean pupil 

dilation is useful for cognitive load measurement, especially for young participants. In 

[33], the mean galvanic skin response was found to increase with cognitive load.  

Cognitive load measurement using physiological measures has several advantages 

compared to subjective and performance measures. For example, this method can 

estimate user cognitive load level automatically due to the subliminal nature of the 

physiological data being produced. This is unlike the subjective and performance methods 

which require the involvement of the users. Furthermore, the continuity of physiological 

data collected from the human body allows a detailed analysis of the fluctuation of 

cognitive load level while the task is being undertaken. This method can therefore 

measure cognitive load levels in real-time and is more advanced than the subjective and 

performance methods.  
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However physiological methods also have a number of limitations. The main 

limitation is the intrusiveness caused by the physiological data collection process which 

requires the attachment of probes, electrodes and monitoring equipment to the user’s 

body. This can interfere with the user’s ability to perform the task naturally. Furthermore, 

similar to other signal processing applications, the physiological data is contaminated by 

background noise which can reduce the accuracy of the measured cognitive load level and 

thus it is difficult for this method to be employed in real-life situations.  

2.2.4 Behavioral measures 

Cognitive load measurement methods using behavioral measures are based on the 

assumption that users behave and interact differently under different cognitive load levels. 

Behavioral measures can be used as alternatives to subjective and performance measures 

and are commonly used in the human computer interaction (HCI) community to assess 

users’ cognitive load for interface evaluation purposes. Various human computer 

interaction features have been analyzed to clarify the cognitive load state of the user 

including gaze tracking [36], text input and mouse-click events [37-38] and digital-pen 

gestures [39].  

Unlike the subjective, performance and physiological methods, behavioral methods 

are objective, non-intrusive and are in real-time as they are based on the data collected 

from the users while they are performing the task without them knowing that their 

behavioral data is being recorded. Behavioral methods allow a user to perform the task 

naturally with minimal interference. These advantages make cognitive load measurement 

by the behavioral method the most suitable for real-life application systems.  

2.3 Cognitive load and speech 
The usefulness of speech features for cognitive load measurement has been of 

interest to many researchers over the last couple of decades [2, 5]. This is because people 

are required to speak in many real-life tasks such as using telephone and using voice 

control systems. Speech data can be easily collected in a non-intrusive and inexpensive 

way. The cognitive load measurement methods based on speech features are non-

intrusive, inexpensive and can be performed real-time [5]. As a result, they are more 

advanced than those based on the subjective, performance and physiological measures.  

The impact of cognitive load variation on speech features can be explained by two 

main reasons. The first is that people tend to communicate in different ways under 

different levels of CL. For instance, under the high cognitive load caused by the high 
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complexity of a task, they tend to use vocabulary relevant to their feelings such as hard, 

and difficult more frequently [40]. Furthermore, they may speak faster because they need 

to focus on the complex task [41]. For this reason, the variation of the load will affect the 

linguistic features relating to the content of speech and the dialogue related features of 

speech (at the word or phrase level). These features are referred to as the high-level 

features in this thesis. The cognitive load measurement method based on high-level 

speech features can be categorized as a behavioral method as these features characterize 

users’ behavior. Details of the effect of cognitive load variation on high-level speech 

features are described in Section 2.3.1. The second reason is based on the assumption that 

cognitive load is a physiological variable and therefore its variation influences the muscle 

tension of the vocal cord and the vocal tract of the human speech production system [42]. 

This in turn affects the prosodic and acoustic features, which are characterized by the 

vibration rate of the vocal cord and the shape of the vocal tract. These features are 

referred to as the low-level speech features in this thesis and the cognitive load 

measurement method based on them can be categorized as a physiological method. 

Details of the effect of cognitive load variation to low-level speech features are described 

in Section 2.3.3.  

2.3.1 Effect of cognitive load variation on high-level speech features  

A number of high-level speech features such as filled pauses, repetitions, silence 

pause, false starts, disfluencies, response latency and vocabulary categories have been 

shown to vary according to the fluctuation of cognitive load levels. When the load level 

increases, it was found that people tend to use words that denote feelings e.g. hard, 

difficult and heavy more frequently and use prepositions and conjunctions less frequently 

[40]. Furthermore, the length and frequency of silent pauses are increased [43-44]. This is 

to be expected because under a difficult task situation and proportionately high cognitive 

load, people will need more time for problem solving resulting in more silent moments in 

their speech. Self-correction and false starts, two feature types of disfluencies, have also 

been identified as indicators of high load [2]. In addition, users tend to engage in self-talk 

to aid themselves in the problem solving process as the task complexity increases [45]. It 

was also found in [46-47] that disfluencies and hesitations will occur more frequently in 

speech under a cognitively demanding task. The correlation between the sentence 

fragments, consisting of incomplete syntactic structures or ill-formed sentences, and the 

variation of CL level was investigated in [2]. It was found that under high cognitive load, 

sentence fragmentation will occur more frequently. Specifically, analysis conducted in 
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their corpus using six types of sentence fragments that are manually detected found that 

72% of fragment instances occurred in high cognitive load speech [2].       

2.3.2 Human speech production  

In order to explain the impact of cognitive load variation on low-level speech features 

which are characterized by the human speech production system, this subsection briefly 

describes the human speech production system and the generation of speech.  

Speech is a vocalized form of communication for human beings. We use it every day 

almost unconsciously, without devoting much thought to how it is produced. The human 

speech production process begins with language processing, where the contents of an 

utterance are converted into phonetic symbols in the brain’s language center. Following 

this, three sub-processes take over, including the generation of motor commands for the 

vocal organs in the brain’s motor center, articulatory movement of the vocal organs based 

on these motor commands and finally, the emission of air from the lungs. These work 

together to produce speech [48]. The speech production process is described in Figure 

2.3.  

 

Figure 2.3: Speech production process [48]. 

 

Human speech is categorized as voiced (e.g. /aa/) and unvoiced (e.g. /t/). When 

voiced speech is produced, the airflow from the lungs passes through the opening in the 

vocal folds, causing them to vibrate. During this vibration, the tension and the elasticity 

properties of the vocal folds allow them to draw towards each other and separate apart in 

each vibration cycle. In particular, the air pressure below the folds initially forces the air 

to flow through the opening of the folds and separates them apart. The velocity of the 

flow increases the area of constriction and causes a decrease of the air pressure below the 

folds. This negative pressure will cause the folds to draw towards each other until 

eventually the opening is closed. The air pressure below the folds then increases to a level 

sufficient to force the vocal folds to open again. The cycle is repeated until the vocal folds 

are abducted to produce the phone. The periodic vibration of the vocal folds results in 
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cyclic puffs of air, which is considered to be the sound source. This source is mainly 

characterized by the fundamental frequency, the rate at which the vocal folds vibrate. 

When the unvoiced-speech is produced, the vocal folds do not vibrate and the airflow 

from the lungs passes though a narrow space formed by the tongue inside the mouth. This 

produces a turbulent flow of air resulting a noise-like sound.  

The air stream from the opening of the vocal folds passes though the vocal tract, 

causing it to resonate. The vocal tract is the combination of all the vocal organs beginning 

at the opening between the vocal folds and ending at the lips. The resonance 

characteristics of the vocal tract are determined by the shape of it, which varies when we 

speak due to movement of the jaws, the tongue and other parts of the mouth. This process 

enables humans to control the speech sound being produced by changing the position of 

the vocal organs in their mouth.  

2.3.3 Effect of cognitive load variation on low-level speech features  

As presented in 2.3.2, the speech production process involves articulator movement. 

The physiological state that is a response to a perceived high level of task demand i.e. 

high cognitive load is usually accompanied by specific emotions e.g. fear, anger and 

anxiety. This causes deviation in the articulator movements which in turn impacts the 

utterance [49]. Under a high workload task, speaker’s respiration rate tends to increase. 

This increases subglottal pressure during speech, and hence increases the fundamental 

frequency of voiced speech sections [49]. An increased respiration rate also results in 

shorter durations of speech between breaths, which affects the articulation rate [42]. In 

addition, dryness of the mouth in situations of excitement, fear and anger can also affect 

different aspects of speech production including the muscle activity of the larynx and 

condition of the vocal cords, which directly affect the volume velocity through the glottis 

[42]. The effects of heavy task demand on other muscles including those that control the 

tongue, lips and jaw shaping the resonant cavities of the vocal system also contribute to 

changes in speech production [42].  

Although the impact of load variation on human speech production has not been fully 

understood, its systematic influence on low-level speech features has been recognized 

through previous studies. In particular, an increase in load has been associated with an 

increase in pitch [50-53], reduction in jitter and shimmer [51], increase in the first and 

fourth formants [53] and decrease in the second formant [54-55]. Other vowel-specific 

variations in formant frequencies with cognitive load have also been reported [54-55]. 
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Apart from the pitch and formant frequencies, low-level features characterizing the 

spectral energy distribution have also been found to be indicative of cognitive load. In 

particular, an increase in cognitive load is reflected by an increase in the spectral energy 

spread and spectral center of gravity [53], a reduction in the ratio of energy below 500 Hz 

to energy above it and a decrease in the gradient of energy decay [50]. It has also been 

suggested that the variability in speech amplitude increases while the speech spectra 

become flatter under high CL conditions [56].  

While both high-level and low-level speech features can potentially be used for 

cognitive load measurement, their methods of extraction are very different. This in turn 

affects their ability to develop the cognitive load classification system. Low-level speech 

features can be extracted automatically and directly from the speech waveform. 

Therefore, it is possible to develop an automatic cognitive load classification system 

based on this type of feature. High-level speech features, on the other hand, can only be 

extracted based on either manual labeling of the speech data or automatic speech 

recognition. Given that manual labeling is slow and expensive and that automatic speech 

recognition systems are not yet robust enough for this application, the development of an 

automatic speech-based cognitive load classification system using high-level features is 

expected to be difficult. This thesis therefore focuses only on the investigation of the 

automatic cognitive load classification system based on low-level speech features.  

 

2.4 Automatic speech-based cognitive load classification system  
 

As a pattern recognition system, a speech-based cognitive load classification system 

consists of a feature extraction module, used to extract relevant features from speech, and 

a classification module, usually employing a machine learning approach to model and 

recognize the load specific patterns from these features. In order to improve the 

robustness of the system, it is necessary to reduce or eliminate variation in patterns due to 

factors unrelated to cognitive load such as background noise, channel mismatch and 

speaker variability. The feature extraction module is therefore often combined with other 

modules such as noise reduction and channel/speaker normalization. The combination of 

all of these modules is referred to as the front-end. The classification module is referred 

as the back-end. The general structure of a speech-based cognitive load classification 

system is shown in Figure 2.4. 
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Figure 2.4: The diagram of an automatic speech-based CL classification system. 

 

2.4.1 Front-end 

2.4.1.1 Feature extraction  

A front-end of an automatic cognitive load classification system is designed to 

extract speech features. These are typically frame-based and are computed from the 

voiced frames of speech. The feature vector, obtained by concatenating all the feature 

elements computed in individual frames of an utterance, is referred to as the static feature. 

Concatenation of the static and temporal derivatives 

The dynamic features which capture temporal information between frames have 

previously been found to be very useful for cognitive load classification. The 

concatenation of the dynamic feature into a static feature significantly improves the 

performance of the classification system, compared to the one based solely on the static 

feature [5, 57]. The first order derivatives are referred to as delta feature and can be 

computed based on regression as follows: 

                            N
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where nCi  is the delta feature calculated on the nth frame of the ith dimension of the 

feature C  and N specifies the number of frames across which delta features are 

calculated. Similarly, second order derivatives (the delta-delta features) can be computed 

using the same equation on the delta feature vector instead of the original feature vector. 

Delta and delta-delta features effectively encode the temporal information, however 

they are limited in their ability to model higher level temporal aspects of speech since 

they only model the slope of the feature at the current point in time. For instance, with the 
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standard method of calculation using a value of N = 2, the delta feature will be an 

estimate of the slope at the current time based on the values across 5 frames (50 ms if the 

duration of each frame is 10 ms). Thus, at best, they are only able to incorporate the 

temporal aspects of speech within a time window of 50 ms. In order to capture the 

temporal aspect of speech in a longer time window, we need to increase the value of N. 

However, this will only produce a longer average of the slope and its finer details will be 

lost.  

The shifted delta technique has been proposed as a better alternative for including the 

temporal information in the speech signal across a longer time window. It was originally  

proposed for language identification [58]. Shifted delta feature of a frame is obtained by 

concatenating a number of delta features computed from following frames. 

According to the method described in [59], the computation of the shifted delta 

feature is specified by four parameters: M, D, P, and K. M specifies the number of basic 

feature streams to use in the calculation. The shifted delta features are computed 

separately for each of the M feature streams. P is the number of frames from one delta 

calculation to the next and K is the total number of delta values concatenated together to 

form the shifted delta feature. For each of the feature streams, the shifted delta feature 

vector at time  is given by the concatenation of the mnCi ,  for  0 ≤ m ≤ K, where        
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The shifted delta features for each time instance are calculated across a window of 

(K-1)P+2D+1 frames. For the shifted delta structure used in this thesis where D, P and K 

are set to 1, 3 and 7 respectively as in [4-5], the shifted delta feature can incorporate 

temporal information spanning 21 frames, i.e. 210 ms whilst retaining the fine-grained 

information within that window. This is because a sampling of all the delta values within 

that window is used. Thus the shifted delta feature allows the inclusion of a much wider 

range of temporal information than the standard delta or delta-delta features. A diagram 

showing the method for producing the shifted delta feature is shown in Figure 2.5.  

The shifted delta feature of a multi-stream feature is obtained by concatenating the 

shifted delta feature computed on individual streams. An example of the combination of a 

three dimensional feature (C0-C2) and its shifted delta feature is provided in Figure 2.6.  
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Figure 2.5: Shifted delta feature calculation for a single feature stream at nth frame [60]. 

 

 

Figure 2.6:  Concatenation of the static and shifted delta features.  

 

A number of low-level speech features have been utilized by automatic speech-based 

cognitive load classification systems to date. In particular, pitch, intensity, and Mel 

frequency cepstral coefficients (MFCC), have been shown to be effective [5, 53, 57]. In 

[61], it was shown that the group delay feature, which is based on phase spectrum, can be 

used to provide additional cognitive load information to the MFCC-based system and 

improve its performance. In [4], it was indicated that the features based on the voice 

source are useful for cognitive load classification. The usefulness of formant frequencies 

was also found in [53-54, 62]. The non-linear Teager energy operator was found to be 

effective for classifying cognitive load in [63]. Other features including perceptual linear 

prediction coefficients, spectral center of gravity, spectral energy spread and vowel 

durations were also found to be useful in cognitive load classification systems [53].  

2.4.1.2 Feature warping  

In a classification system, the features extracted from speech can be affected by a 

number of factors such as the short-term channel distortion and speaker variability. A 

feature normalization technique called feature warping can be used to reduce the effects 

of these factors and improve the robustness of the system. This technique maps the 
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distribution of a feature stream in a specific time interval to a standardized distribution. In 

practice, the mapped value of the current feature value is calculated over a sliding 

window as in [64] 

    
N

RNipdfm 21                                                                              (2.3) 

where m is the mapped value, ipdf is the inverse cumulative distribution function for the 

normal distribution, N is the window length, R is the ranking of the value in the 

descending order of the original feature vector within the sliding window. Figure 2.7 

shows an example of the distributions of a feature vector before and after warping. 

 
Fig. 2.7: The distribution of a speech feature before warping (a) & (b) and after warping (c) & (d). 

 

2.4.2 Back-end 

Given that the cognitive load (CL) specific patterns are contained in the acoustic 

features extracted by the front-end, the goal of the back-end is to initially model the 

cognitive load from these patterns and then perform pattern matching to determine the CL 

level. The Gaussian mixture models (GMMs) and the support vector machines (SVMs) 

are the two classification methods that have been used in automatic CL classification. 

Comparing these two methods, GMMs are generative classifiers where the model 
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representing each class is trained individually on a training data set of that class. 

Generative classifiers do not consider training data from other classes when training the 

model of one class, thus making the training process of GMMs simple and fast. SVMs, on 

the other hand, are discriminative classifiers. Training their models takes into account the 

training data of all classes simultaneously, which makes the training process very 

complex [65]. Furthermore, SVMs were shown to be less effective than GMMs for CL 

classification [66]. Hence, Gaussian mixture models were used for all the experiments 

reported in this thesis. 

2.4.2.1 Gaussian mixture model 

The Gaussian mixture model (GMM) is a generative classifier used to model the 

underlying probability density function of speech feature. This model has been widely 

used as the classifier in many existing classification systems. The basic idea of a GMM is 

to model the distribution of a feature in the feature space with a number of Gaussian 

distributions. For instance, the distribution of a single-dimensional feature vector with 

probability distribution as shown in Figure 2.8a can be described as the sum of three 

Gaussian distributions with different weights, means, and variances as shown in Fig. 2.8b.  

 

 
Figure 2.8: (a) Probability distribution of a single-dimensional feature,  

                           (b) Three Gaussian components of the distribution shown in (a). 
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To model more complicated distributions, more Gaussian components are needed. In 

the case that the feature vector is multi dimensional, the Gaussian mixture model is a 

mixture of several multivariate unimodal Gaussian densities, expressed as 

 (2.4) 

with  

  (2.5) 

 

where  is the feature vector,  is the weight of the ith mixture satisfying , M 

is the number of mixtures, D is the feature dimension,  and  are the covariance matrix 

and mean vector of the ith mixture and , where 1 ≤ i ≤ M is the set of 

GMM parameters. These parameters are estimated based on maximizing the likelihood of 

the training observation from the estimated model, using the expectation-maximization 

(EM) algorithm [67].  

In cognitive load classification, a universal background model (UBM), which is 

another GMM, is trained from a large quantity of background speech. The GMMs 

representing each CL level are adapted from the UBM, using the speech features of the 

corresponding cognitive load level and based on maximum a posterior (MAP) adaptation 

[68]. For the features  at time  of a particular cognitive load level, the 

MAP adaptation from the universal background model is as follows [68].  

Initially the probabilistic alignment of the feature  into the UBM mixture 

components is computed as 

                                                                            (2.6) 

The sufficient statistics for the weight, mean, and variance parameters are then 

computed as below: 

  (2.7) 

    (2.8) 

  (2.9) 

These sufficient statistics are used to adapt the UBM parameters to obtain the GMM 

for the corresponding CL level. In order to control the balance between the estimated 

sufficient statistics and initial UBM parameters, an adaptation coefficient  is used. In 

addition, a scale factor  is introduced to satisfy the constraint,  on the 

estimated weights. The adapted weight mean and covariance for the ith mixture are 
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  (2.10) 

  (2.11) 

   (2.12) 

A fixed relevance factor r is used to calculate the adaptation coefficient, , as below: 

  (2.13) 

This relevance factor is data dependent and has a typical value of 16 [68]. As UBM 

models the basic distribution of speech feature, the use of this model as the initial 

distribution for GMMs representing CL levels can improve the precision of the GMMs 

when training data is limited.  

In the testing phase, the log likelihood  of an utterance  is 

calculated as  

   (2.14) 

using the model parameters of the hypothesized cognitive load level  and UBM . 

The cognitive load level that has the highest score is chosen as the load level of the test 

segment.  

A block diagram of an UBM-GMM based CL classification is shown in Figure 2.9.     

 

 

Figure 2.9: Block diagram of an UBM-GMM based CL classification system  

(LL: log likelihood).  
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2.4.2.2 Fusion method 

Cognitive load specific information can be contained in different speech features. An 

approach using multiple features, where the feature vector is obtained by concatenating 

several features, can combine the cognitive load information from the various speech 

features and improve the performance of the classification system. The disadvantage of 

this approach is that it increases the dimension of the feature vector which consequently 

increases the amount of data required to estimate the CL model parameters sufficiently. 

Moreover, a high dimensional feature vector will also lead to an increase in the 

computational complexity of the system, which in turn increases the processing time of 

the system. The fusion technique is an alternative approach to combine cognitive load 

specific information from multiple speech features. In this technique, the likelihood score 

of the fusion system is obtained by combining the likelihood scores of the cognitive load 

classification systems based on individual features, as illustrated in Figure 2.10. In this 

thesis, this is done by using a linear score weighting technique commonly used in speaker 

recognition and language identification systems [69-70]. Based on this technique, the log 

likelihood score of the fusion system is obtained as   

   (2.15) 

where  is the log likelihood score of the fusion system;  is the log likelihood score 

generated by the ith system based on the ith feature vector;  is the positive weighting 

coefficient that satisfies the constraint . The weighting coefficients 

are empirically chosen to optimize the performance of the classification system.  

 

 

Figure 2.10: Overview of a CL classification system based on fusion technique. 

 

2.4.3 Existing CL classification systems 

Possibly the first automatic speech-based cognitive load classification sysem was 

developed in 2008 by Yin et al. This system used a Gaussian mixture model (GMM)-
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based classifier with front-end features consisting of mel frequency cepstral coefficients 

(MFCC) and prosodic features. When evaluated on a corpus consisting of three cognitive 

load levels, its classification accuracy was 71.1%.  

Since then, numerious features have been used to developed the CL classifciation systems 

based on a GMM classifier. Table 2.1 summarizes the various front-end features and the 

corresponding classification accuracy obtained from the experiments performed on the 

database consisting of three CL levels.  

 

Table 2.1: Summary of various front-end features proposed for cognitive load 

classification 

Author(s)  Front-end features Classification accuracy 

Yin et al. [5] MFCC, prosodic features  71.1% 

Yap et al. [61] MFCC, prosodic, phase-based features  85.3% 

Yap et al. [54] Formant frequencies 67.9% 

Yap et al. [4] MFCC, prosodic, glottal features 84.4% 

 

 

It can be seen from Table 2.1 that although many classification systems have been 

proposed, their performances are not very high. Furthermore, these performances were 

obtained from the experiements performed in clean conditions where background noise 

did not exist. In practical scenarios, the cognitive load levels need to be estimated in 

environments such as in car, at the airport, or in call-center where the speech is corrupted 

by the background noise. As such, the performance of the above-mentioned systems can 

be degraded dramatically. Therefore, it is necessary to develop methods to improve the 

performance of the existing classification systems and to make them more robust to noise.  

2.5 Cognitive load speech corpora  
The usefulness of a speech feature for cognitive load classification is evaluated based 

on the accuracy of the classification system using that feature, when tested on a cognitive 

load speech database. It is therefore necessary to have a standard cognitive load corpus. 

However, as the study of speech-based cognitive load classification is still in early stages, 

such a standard corpus is not available. Most of the current research on the cognitive load 

classification has therefore been conducted on speech corpora collected by researchers 
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themselves [2, 5, 71-73]. Intuitively, the reliability of the results of the final study will be 

affected by a number of aspects of the cognitive load corpora as described below: 

 The number of load levels: human cognitive load is a continuous variable 

reflecting the amount of mental load imposed on the subject’s cognitive system. 

However, the problem of classifying load levels can only be conducted through a 

discrete scale containing a limited number of levels obtained by quantizing the 

continuous scale. A large number of levels would better to describe a human’s 

cognitive load state. This is also desirable for practical cognitive load based 

systems, as the fine scale would allow the system to adapt better to the cognitive 

capacity of user and therefore produce higher productivity. However, given that 

the research of cognitive load classification based on speech features is in early 

stages, most of the studies in this field are performed on the CL corpora that 

contain two levels [2, 53, 72-73] or three levels of cognitive load [4, 74].  

 Whether the corpus was collected in laboratory or in a real-world environment: 

results obtained from the use of a real-world corpus would better reveal the actual 

potential of the system in a real-life application. This is due to the fact that a 

corpus collected in this fashion is affected by all the factors that can degrade the 

performance of the system e.g. noise and channel mismatch, which exist in real-

life. However, in order to use such corpora, manual segmentation of the speech 

into different segments corresponding to different cognitive load levels would be 

required, which can be very time consuming. On the other hand, for a corpus 

collected in a laboratory different utterances corresponding to different CL levels 

are recorded separately, hence the manual segmentation process is not required. 

Furthermore, the factors unrelated to cognitive load i.e. noise and channel 

mismatch will be low. Results obtained from the use of this type of corpora better 

reveal the actual ability of speech features in classifying the load level. Due to 

these advantages, most of the studies on speech based cognitive load classification 

to date have been carried out on laboratory corpora [2, 4, 53, 72-74].   

The cognitive load speech corpora used in all the experiments reported in this thesis 

are the Stroop test and the Reading Comprehension, which were collected in a laboratory 

environment [5, 57]. These two corpora have several common features. They contain 

speech corresponding to three levels of load from fifteen native English speakers, eight of 

whom are female and seven male. The speech in both corpora is sampled at 16 kHz. The 

three levels of cognitive load, namely low, medium and high, in these two corpora were 
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induced by asking the speakers to perform three different tasks with the corresponding 

difficulty level. Details of the collection of these two corpora are described in the next 

sections.  

2.5.1 Collection of the Stroop test database 

This database was collected via tasks that were designed based on the ‘Stroop test’ 

developed by John Ridly Stroop [75]. In this test, there are two types of tasks namely the 

reading color name (RCN) task in which participants are asked to read out the words 

ignoring the font color; and the naming colored word (NCW) task in which the font color 

of words has to be read out. An example of these two tasks is shown in Figure 2.11. 

Between these two tasks, the naming colored word is expected to be more difficult as 

participants need to put in more effort to override the meaning of the text in order to read 

out the actual font color. This was supported by a study, where a significant delay of task 

completion was noticed in naming colored word tests compared to reading color name 

[75]. Speech from NCW is therefore assumed to correspond to a higher cognitive load 

level than that from RCN.  

 

 
                Figure 2.11: An example of two tasks of the Sroop test 

 

Given the nature of the test, the following procedure was proposed to collect three 

levels of cognitive load speech in the Stroop test corpus [5]: 

 Low level of cognitive load speech: participants are required to perform two 

reading color name tasks: 

o Test 1: all words are written in black. 

o Test 2: all words are written in congruent color i.e. font color is the same 

as the text meaning). 
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 Medium level of cognitive load speech: participants are required to perform two 

naming colored word tasks: 

o Test 1: words are written in either congruent or incongruent color i.e. the 

font color is different to the text meaning. 

o Test 2: words are written in incongruent color.  

 High level of cognitive load speech: participants are required to perform the two 

naming colored word tasks under a time constraint: 

o Test 1: words are written in incongruent color, appearing only one at a 

time. 

o Test 2: words are written in incongruent color, appearing consecutively 

while previous words stay on display.  

The speech in this corpus contains four utterances per CL level per subject. The 

approximate length of each utterance is 15 seconds. In addition to the above-mentioned 

speech, another task was recorded where the same participants read a story as neutral 

reference data. The story reading speech consists of approximately 90 seconds of speech 

per speaker.   

2.5.2 Collection of the Reading and Comprehension database 

In this database, speech corresponding to each cognitive load (CL) level was 

recorded by asking the subjects to read out a story of a corresponding level of difficulty 

and then answer three open ended questions related to the story’s content. The difficulty 

level of the stories is measured using the Lexile scale [76] – a semantic difficulty and 

syntactic complexity measure scale ranging from 200 to 1700 Lexiles (L), corresponding 

to the expected reading levels of students from first grade to graduate level. The Lexile 

ratings of the stories used were 925 L, 1200 L, and 1350 L respectively. The stories 

contain general knowledge about weather phenomena, household appliances and the 

functions of the human body to avoid expertise being a factor in the results. The open 

ended questions are: 

 Give a short summary of the story in at least five whole sentences 

 What was the most interesting point in this story? 

 Describe at least two other points highlighted in this story.  

The speech in this corpus contains four utterances corresponding to each cognitive 

load level for each subject, one from reading the story and three from answering the 

questions related to that story. The approximate lengths of the utterances that correspond 

to reading the story for the low, medium, and high cognitive load level are 90 seconds, 
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140 seconds, and 230 seconds respectively. The approximate length of each answer to the 

three questions for all three levels of CL is 30 seconds.  

Between these two corpora, the Stroop test corpus contains a limited number of color 

words such as ‘red’, ‘blue’ and ‘green’. This corpus is akin to an isolated speech corpus 

as the subjects read the words one by one slowly. In addition, there is a speech rate 

artifact caused by the time constraint for the high CL speech. On the contrary, the 

Reading and Comprehension corpus contains a significantly larger vocabulary due to the 

varied content of the long stories, and the open ended nature of the questions. The story 

reading section of this corpus contains continuous speech and the question answering 

section consists of spontaneous speech. The high level of phonetic variability in the 

Reading and Comprehension corpus results in greater variability in speech features for 

each load level in this corpus compared to the Stroop test corpus. Consequently, 

classification of the CL levels based on speech from the Reading and Comprehension 

corpus is more challenging than classification based on speech from the Stroop test 

corpus.  

2.6 Summary  
This chapter presented the concept of human working memory, cognitive load and 

the background of cognitive load theory. Cognitive load theory is based on the 

assumption that human working memory is limited and its objective is to design the 

instructional strategies that can exploit working memory resources in an optimal way, in 

order to achieve the highest task performance. The chapter then described the benefit of 

cognitive load measurement and reviewed the various techniques that have been used for 

this purpose. The effect of cognitive load variation to speech features was also presented 

in this chapter. The human speech production mechanism was then briefly described in 

order to provide a better understanding of how speech features vary with cognitive load. 

Section 2.4 then reviewed the speech features that have been used to classify cognitive 

load levels and described the structure of an automatic CL classification system. The 

system components of feature extraction, feature normalization and the Gaussian mixture 

model classifier were described. Finally, it provided details about the Stroop test and the 

Reading and Comprehension corpora, which are the two cognitive load corpora used in 

all the experiments for this thesis.   
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3.                                                          

Chapter 3: Investigation of the 

effectiveness of speech features for 

cognitive load classification 
 

 

 

 

 

 

 

 

 

The human speech production mechanism can be described as a two-stage process, 

first a sound source generation stage and second a spectral shaping stage. The source-

filter model describes the spectral shaping stage as a filtering process where the filter is a 

model of the vocal tract. This model assumes that the sound source generation and the 

filtering process are independent of each other [77]. The simplicity of this model is one of 

its main advantages and it has been used in many different areas of speech processing 

such as emotion recognition, speaker verification and speech synthesis [78-80]. Based on 

this model, a speech feature can be categorized as either a source-based feature, a filter-

based feature, or a combined feature (describing both source and filter). The impact of 

cognitive load variation on the human speech production system can occur at the source, 

the filter or both. While it is very difficult to quantify exactly how much each of these 

components contributes to the characterization of cognitive load, the effectiveness of 

source-based or filter-based features in a cognitive load classification system is expected 

to give an estimation of the relative contribution of these two components in 

characterizing the load. Finding this relative contribution will help feature selection and 

the design of a front-end for cognitive load classification.  

Given that different features describe different properties of speech, it is possible that 

the cognitive load information contained in them complement each other. Incorporating 
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the information from several individual features can increase the overall cognitive load 

information extracted compared to that contained in any one feature. This in turn can 

improve the performance of the classification system. As such, it is necessary to 

investigate the effectiveness of different speech features for cognitive load classification.  

One of the main aims of this chapter is to analyze the relative contribution of source-

based and filter-based features, so this chapter will briefly present the source-filter model 

of the human speech production system. The details of the human listening test for 

cognitive load classification are presented to assist in the understanding of the type of 

speech cues humans used to classify cognitive load. Section 3.3 describes the baseline 

classification system used to perform the classification experiments in this thesis. The 

investigation of the effectiveness of various speech features, categorized as either source-

based, filter-based or combined, for cognitive load classification is described in Section 

3.4. The combined speech features that are presented in Section 3.4 have been utilized in 

previous studies of cognitive load classification. A novel use of spectral centroid features 

for cognitive load classification is proposed in Section 3.5. Finally, the comparison and 

discussion of the effectiveness of different speech features is provided in Section 3.6.  

3.1 Source-filter model of human speech production system 

The source-filter model presented here models the speech production system, over a 

short period of time, as a linear time invariant system excited by a sound source. 

3.1.1 The source component  

The sound sources that produce voiced and unvoiced speech are very different. The 

source of voiced speech is the pulse train of airflow from lungs created by the periodic 

vibration of the vocal folds. The spectrum of the glottal source consists of a number of 

frequency components corresponding to the harmonics of the fundamental frequency of 

the vibration of the vocal folds. This fundamental frequency will be referred to as  for 

the rest of this thesis. As a result, increasing the frequency of vibration of the vocal folds 

will make the spacing between the harmonics in the glottal source spectrum larger while 

the overall shape of the spectral envelope remains unchanged. An example waveform and 

spectrum of a glottal source signal is shown in Figure 3.1.  
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Figure 3.1: (a) Glottal source waveform and (b) the corresponding spectrum [81]. 

 

The source of unvoiced speech is turbulent airflow caused by a constriction of the 

vocal tract at some point. Unlike the periodic excitation of the voiced speech, turbulent 

airflow contains no dominant periodic component and has a relatively flat spectrum.  

3.1.2 The filter component  

The vocal tract, which is the region in the speech production system bounded by the 

glottis and the lips, is modeled as a non-uniform tube whose shape is a function of time. 

The cross-sectional area of the vocal tract at a particular time instant varies along the 

vocal tract. This area and hence the shape of the vocal tract is determined by the position 

of the tongue, lips, jaws and other vocal organs. The shape of the vocal tract changes 

continuously during speech production, following the movement of these vocal organs to 

produce the desired speech.  

The source waveform travelling through the vocal tract is shaped by the tract’s 

resonance characteristic, determined by its shape which varies with time, to produce 

speech. However for short durations of typical length 10-20 ms, the shape of the vocal 

tract and hence its resonance characteristic can be considered as fixed. As a result, speech 

can be considered to be stationary in the short segments corresponding to these durations. 

These segments will be referred to as frames of speech in this thesis. The entire speech 

signal is usually referred to as quasi-stationary as this stationary property only exists in 

short durations.  
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Given that the shape of the vocal tract can be assumed to be stable for short 

durations, the vocal tract can be modeled as a linear time invariant filter in these time 

periods. The peaks in the magnitude response of this filter reflect the resonant frequencies 

of the vocal tract and are referred to as the formant frequencies. These will be shown in 

Figure 3.4 which can be found in Section 3.1.3.  

At the mouth/lip opening, the sound waveform ceases to be constrained in its 

propagation. The effect of this change, referred to as lip radiation, can be approximated as 

a fixed filter with a 6 dB/octave rising magnifying spectrum. The effect of lip radiation is 

not accounted for the vocal tract model but is considered as a high-pass filter cascaded to 

the vocal tract filter as shown in Figure 3.2.  

3.1.3 Combining the source and the filter components 

According to the source-filter model, speech is produced as the excitation signal e(n) 

being filtered by the vocal tract filter zV  and the lip radiation filter zR  as shown in 

Figure 3.2. The spectrum of speech zS  can be expressed in the complex frequency 

domain as: 

)()()()( zRzVzEzS                                                                                     (3.1) 

 

Figure 3.2: The source-filter model for voiced speech production. 

As mentioned previously, the effect of the lip radiation is approximated as a              

6 dB/octave rise, which can be modeled as a first order high pass filter:  

)1(,1
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1

1
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zzR

                                                                                  
(3.2) 

The excitation signal e(n) can either be a periodic glottal pulse sequence for 

generating voiced speech or random noise for generating unvoiced speech. In the case of 

voiced speech, the glottal excitation can be considered as the result of the convolution of 

a train of impulses separated by the pitch period T0 = 1/F0 , where F0 is the fundamental 
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frequency, and a single glottal waveform. This is another filtering operation where the 

impulse response of the filter is the single glottal waveform, as illustrated in Figure 3.3.  

 

Figure 3.3: Glottal filter model. 

 

From equation (3.1), the spectrum of voiced speech can be expressed as  

)()()( zRzVzGzPzS                                                                              (3.3) 

where )(zP  is the impulse train and )(zG  is the response of the glottal transfer function. 

The vocal tract of voiced speech can be adequately modeled as an all-pole system, 

expressed as: 

     p

i

i
i za

zV

1
1

1)(                                                                                  (3.4)  

where ia  are parameters of the system that can be estimated using linear prediction and p 

is the order of the system. The system order is usually selected based on the rule of thumb 

of  

                 1000/2 sFroundp  

where Fs is the sampling rate [82]. 

Estimating glottal waveform (sound source) and parameter of vocal tract filter  

The excitation signal or glottal waveform of voiced speech E(z) can be obtained from 

equation (3.1) as  

)()(
)(

zRzV
zSzE                                                                                           (3.5) 

where the effects of the vocal tract filter and lip radiation are removed from the speech 

signal. In this thesis, the Iterative Adaptive Inverse Filtering algorithm [83] was used to 
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estimate the glottal waveform and the parameters of the linear prediction model of the 

vocal tract filter from the speech signal. This method estimates the effect of the voice 

source on the speech signal as a first order all-pole model. Then by estimating and 

eliminating the contribution of the voice source, an all-pole model of order p = 18 for the 

vocal tract is computed by linear prediction modeling. The glottal waveform is then 

obtained by filtering the original speech signal using the inverse of the vocal tract filter 

and canceling the lip radiation effect by integration.  

In order to obtain better estimates of the glottal waveform and the linear prediction 

model of the vocal tract filter, this computation is executed in a repetitive manner 

consisting of two phases. In the second phase the glottal source is estimated as a second 

order all-pole model. The detailed description of the Iterative Adaptive Inverse Filtering 

algorithm can be found in [83]. Figure 3.4 shows the magnitude spectrum of the phoneme 

/i/, the corresponding magnitude response of the 18th order all-pole system modeling the 

vocal tract filter and the corresponding magnitude spectrum of the glottal waveform 

obtained by applying this algorithm. 

 

 
Figure 3.4: (a) Magnitude spectrum of phoneme /i/, (b) the corresponding magnitude response of the vocal 

tract filter, (c) the corresponding magnitude spectrum of the glottal waveform. 
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The fundamental frequency of the analyzed speech is 155 Hz. It can be seen from 

Figure 3.4c that the magnitude spectrum of the glottal waveform is a sequence of pulses 

located at multiples of 155 Hz. Generally, the amplitude of these pulses decreases with 

respect to frequency. This decreasing trend can be approximated as a gain of                  

-12 dB/octave as shown in Figure 3.4c. In fact the glottal model can be considered as a 

second-order low-pass system. The glottal waveform is obtained from the response of this 

system to an impulse train at pitch period apart.  

3.2 Human listening test 

The main aim of the listening test is to investigate what sort of speech cues humans 

use to identify cognitive load (CL) levels. The speech cues, obtained from the feedback of 

the participants were informally collected after the participants completed the test. They 

are potentially useful in designing the front-end for the automatic cognitive load 

classification system. The listening test was conducted on a subset of the Stroop test 

corpus with eleven untrained listeners, five males and six females, who have no 

experience in studies related to cognitive load. The test was only performed on a subset of 

the corpus in order to reduce the testing time. The Reading and Comprehension corpus 

was not used here because listeners can be able to identify the CL level of speech from 

the content of the story rather than from the speech itself. The Stroop test corpus, on the 

other hand, contains only speech of the color words, e.g., ‘red’, ‘blue’, ‘green’ here the 

linguistic content does not reveal any information about the difficulty level of the task. 

The subset of the Stroop test corpus used for this listening test consists of speech which 

was randomly chosen from eight speakers, four of whom were male and four female. 

Three utterances from the three different CL levels were chosen for each speaker.  

3.2.1 Test procedure 

Figure 3.5 shows the user interface used in the test. Listeners were asked to complete 

the test for each speaker, before moving to the next speaker. This method of testing was 

chosen because listeners were not given training utterances but were asked to rank the 

cognitive load level solely based on each utterance. For each speaker, three utterances 

with different cognitive load levels were randomly assigned to the ‘Speech A’, ‘Speech 

B’ and ‘Speech C’ buttons as illustrated in Figure 3.5. Listeners were permitted to listen 

to these utterances as many times as they wanted by clicking the three buttons. After 

listening they were required to specify the cognitive load level of each utterance. The 
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reported classification accuracies are obtained as the percentage of test utterances whose 

cognitive load levels are correctly estimated.  

 

Figure 3.5: The listening test user interface. 

 

3.2.2 Results and discussion  

The average accuracy of all eleven listeners was 72.3% and the overall confusion 

matrix of the test is presented in Table 3.1.  

 
Table 3.1: Confusion matrix of the human listening test. 

     Actual CL 

Identified CL 
Low  Medium High 

Low 86.4% 5.8% 8.0% 

Medium 2.3% 68.2% 29.5% 

High 11.4% 26.1% 62.5% 

Overall accuracy = 72.3% 

 

The overall high classification accuracy, as compared to the random level of around 

33.3%, indicates that speech does contain cognitive load (CL) information.  

It can also be observed from the confusion matrix that the classification accuracy of 

low cognitive load is significantly higher than that of the medium and high cognitive 

load. Moreover, the rate of confusion between medium and high load levels of speech is 
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large. This is most probably because the difference in difficulty levels between the low 

and medium load tasks is much larger than the difference in difficulty levels between the 

medium and high load tasks. This is understandable given that the low cognitive load 

speech was collected from the reading color name task. This task is expected to be much 

easier than the naming color word task on which both the medium and high load speech 

were collected. Furthermore, the time constraint in the high load task may not have been 

sufficient to cause a significant difference in terms of the effort subjects need to make in 

order to perform the high load task compared to the medium load task.  

Figure 3.6 shows the classification accuracy of individual listeners in the listening 

test. This figure indicates that all listeners have the ability to identify the human cognitive 

load level by listening to their speech, though this ability varies considerably between 

listeners. The high performance results in the listening test based on the individual or on 

average strongly suggest that cognitive load cues are contained in speech. These cues can 

indicate some basic patterns that can be exploited by an automatic speech-based cognitive 

load classification system. 

 

Figure 3.6: Accuracies of individual listener in the listening test. 

3.2.3 Speech cues of cognitive load  

The feedback from the participants revealed that generally, the cognitive load (CL) levels 

of speech were identified through numerous speech cues. These are summarized below: 

 Low cognitive load speech: this type of speech is uttered naturally and in a relaxed 

manner, without any confusion or hesitation. This reflects the simplicity of the 
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reading color name task used to collect the speech. The speech cues that the 

listeners used to identify the low CL level speech are soft breathing, slow and 

consistent speech rate within an utterance and natural variation in intonation.  

 Medium cognitive load speech: this type of speech is uttered unnaturally and with 

considerable confusion and hesitation. This is indicated by the presence of filler 

sounds, the parts of speech which are not generally recognized as purposeful or 

containing formal meaning e.g. ‘uh’ and ‘ah’, in the utterance. Furthermore, the 

speakers seemed to be nervous when uttering this type of speech, as indicated by 

heavy breathing. Under medium CL the speech rate is slow and inconsistent, and 

at times is extremely slow. This might be because speakers were confused and 

hence spent more time thinking and deciding which words to articulate. One more 

cue used to identify medium CL speech is less variation intonation, which might 

be due to the nervousness of the speakers.  

 High cognitive load speech: the most distinctive cue indicating this type of speech 

is the higher speech rate compared to low and medium cognitive load speech. This 

is most likely due to the time constraint of the task that is used to increase the load 

level on speakers when collecting the database. The intonation of the high CL 

speech is flatter than those of the low and medium of cognitive load speech. This 

might be because of the nervousness of the speakers and the high speech rate of 

this type of speech.  

A summary of speech cues that listeners used to identify the three levels of cognitive 

load are presented in Table 3.2.  

 
Table 3.2: Speech cues of three CL levels.  

Cognitive load level 

Speech cue 
Low Medium High 

Breath pattern Soft  Heavy Heavy 

Speech rate (the number of words 

per unit of time) within utterance 

Slow, consistent  Slow, 

inconsistent 

Fast, 

consistent 

Filler sounds e.g. ‘uh’ and ’ah’ Never Sometimes Sometimes  

Intonation Naturally varying Less varying Flat 

 

From Table 3.2, intonation seems to be a useful speech cue for identifying cognitive 

load. Intonation is characterized by the pitch contour. A flat intonation is reflected by a 

level pitch contour, whereas a naturally varying intonation is reflected by a more varying 
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pitch contour. The effectiveness of intonation in cognitive load classification by humans 

supports the effectiveness of the shifted delta feature of the pitch for automatic CL 

classification in this thesis (presented in Section 3.4.1.1) and also in previous studies as 

this feature captures the temporal variation of the pitch contour [3, 5].  

3.3 Baseline cognitive load classification system 

3.3.1 System setup 

The automatic cognitive load classification system used to investigate the 

effectiveness of speech features presented in this thesis is described in this section. A 

Universal Background Model – Gaussian Mixture Model (UBM-GMM) based classifier 

was used as the back-end of the system. Both the Stroop test and Reading and 

Comprehension corpora were used in these experiments, each comprising of speech 

recordings collected from fifteen speakers. The speech in these corpora is in the form of 

short-time utterances. In order to obtain the speech feature, the speech of each utterance is 

segmented into 25 ms frames with a 15 ms frame overlap. The feature vector of each 

utterance is then obtained by combining all features extracted from individual voiced 

frames of speech. The voiced frames are detected from the result of pitch extraction; a 

speech frame is considered to be voiced if its pitch can be estimated. During the training 

phase, the speech features extracted from the utterances in the UBM training dataset were 

used to estimate the parameters of the universal background model. The speech features 

extracted from training data set utterance for different CL levels are then used to estimate 

the parameters of the Gaussian mixture model corresponding to these loads using 

maximum a posteriori adaptation on the universal background model. During the testing 

phase, the log likelihood of each testing dataset utterance is computed using the speech 

feature of that utterance based on the equation (2.14). The estimated load level 

corresponds to the model with the largest log-likelihood score.  

3.3.2 Allocation of training and testing data 

All the experiments in this thesis were conducted in a speaker independent and text 

independent manner. Data from speakers used in the test database was not present in the 

training data and text transcription was not used. For experiments performed on the 

Reading and Comprehension corpus, data from a set of five speakers was used as the test 

dataset and data from two other sets with five speakers in each was used as the training 

dataset, as illustrated in Figure 3.7a. All experiments were performed three times in a 
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round-robin fashion, with each of the three different datasets used to form the test set. All 

results reported are obtained by averaging over the three instances. This mode of 

experiment was chosen in order to have a large number of test samples for each test set. 

When using the Stroop test corpus, leave-one-speaker-out experiments were performed 

instead. Data from one speaker was used in the testing phase and data from the other 

fourteen speakers was used in the training phase, as illustrated in Figure 3.7b. Each 

experiment was performed fifteen times with different speakers used as the test speaker 

and the results were averaged. This mode of experiment has been used for the Stroop test 

corpus in previous studies [4-5].  

 

 
Figure 3.7: Allocation of training and testing speech data 

 

For experiments conducted on the Reading and Comprehension corpus, the story 

reading speech of the three cognitive load levels from the training set speakers was used 

as the universal background model training dataset. The question answering speech data 

from the training set speakers was used as the GMMs adaptation dataset. The question 

answering speech data from the test speakers was used to compute the likelihood scores 

from the Gaussian mixture models. For experiments conducted on the Stroop test corpus, 

story reading speech data from the training set speakers was used as the universal 

background model training dataset. The speech corresponding to each of the three CL 

levels from the training set speakers was used as the GMMs adaptation dataset. Speech 

corresponding to each of the three cognitive load levels from test speaker, was used to 

compute the likelihood scores from the Gaussian mixture models.   
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3.4 The effectiveness of source and filter based features  

This section investigates the effectiveness of different speech features, categorized as 

source-based, filter-based or combined features in classifying cognitive load. The 

classification performance of these features can be used to evaluate the relative 

significance of different aspects of the human speech production system in cognitive load 

classification. To quantify the effectiveness of these features, they were employed 

individually to perform CL classification and the obtained accuracy was taken as the 

measure of their effectiveness. The performance of the fusion system based on fusing the 

classification results of different features was also determined. They were used to 

evaluate the complementary CL information capacity of different speech features. The 

classification experiments were conducted under two conditions, either excluding or 

including the dynamic shifted delta feature vector, in order to investigate the importance 

of temporal information for the classification.  

3.4.1 Source-based features  

3.4.1.1 Pitch  

Pitch is a feature of the source characterizing the vibration rate of the vocal folds. It is 

computed for every frame of speech. Amongst the numerous pitch estimation algorithms 

proposed over the years, the Robust Algorithm for Pitch Tracking (RAPT) proposed by 

Talkin [84] is one of the most popular algorithms. The pitch feature used for all 

experiments in this thesis was computed using the RAPT algorithm.  

 

 
Figure 3.8: Distribution of the pitch of the words ‘gray’. 
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Figure 3.8 shows an example of the distribution of the pitch values (computed for 

every 25 ms frames, 15 ms overlapping) of the words ‘gray’ in the Stroop test corpus, as 

spoken by a female speaker under low, medium and high levels of cognitive load. It can 

be seen from this figure that the pitch increases according to the cognitive load level, 

which is supported by the results reported in [50-53]. 

A single pitch (F0) value is extracted for every frame to test the performance of the 

pitch feature for classification. The static (original) pitch feature vector is obtained by 

combining the pitch values of all the frames. Table 3.3 shows the classification accuracy 

obtained using the pitch feature vector and the combination of pitch and its shifted delta 

feature vector as the front-end of the automatic CL classification system tested on the 

Stroop test and the Reading and Comprehension corpora.  

Table 3.3: Classification accuracies of the system using pitch. 

Corpus 
Accuracy (%) 

Pitch Pitch and its shifted delta feature 
Stroop test 

Reading and Comprehension 
32.8 
33.3 

52.2 
37.0 

 

The results in Table 3.3 show that although the pitch feature alone did not provide 

good performance for the classification system, as the classification accuracies obtained 

are close to the level of selecting the correct CL level (low, medium or high) by chance, 

the combination of the pitch and its shifted delta feature provided good classification 

performance. This indicates that temporal variation of the pitch contour is useful for 

classifying the cognitive load levels and agrees with the usefulness of intonation in the 

identification of cognitive load level by humans. The classification accuracy obtained for 

the Stroop test corpus, using the combination of pitch and the shifted delta feature, is 

significantly higher than that for the Reading comprehensive corpus. This is most 

probably because the pitch feature in the Reading and Comprehension corpus has greater 

variability compared to that in the Stroop test corpus due to the high level of phonetic 

variability in this corpus.  

3.4.1.2 Intensity 

Intensity characterizes the amplitude of the vocal fold vibration which in turn 

depends on the pressure of the subglottic airstream. The loudness of speech as perceived 

by the listener is determined by the sound pressure level of the sound wave at the 

listener’s eardrum. The pressure level depends on the intensity of the speech at the mouth 
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of the speaker and the distance between speaker and listener. In speech analysis, the 

loudness of recorded speech is determined as the sound pressure level at the microphone. 

The intensity is dependent on this loudness and the transfer function of the microphone. 

Therefore in order to use the intensity of speech as a feature to characterize the amplitude 

of the vocal fold vibrations, it is necessary to ensure that the distance between the 

speakers and the microphone are fixed for all utterances recorded. This assumption can 

reasonably be made as all the recording processes of the Stroop test and the Reading and 

Comprehension corpora occurred in the same recording studio, using a close talk headset.  

Like pitch, intensity is a single dimension feature with one intensity value per frame. The 

Praat software [85] is used to extract the intensity feature from the speech in this thesis. 

The accuracies of the automatic CL classification system using the intensity feature 

vector as the front-end are provided in Table 3.4.  

Table 3.4: Classification accuracies using intensity. 

Corpus Accuracy (%) 
Intensity Intensity and its shifted delta feature 

Stroop test 
Reading and Comprehension 

32.8 
34.1 

56.9 
41.5 

 

As seen in Table 3.4, the combination of intensity and its shifted delta feature 

produced a high classification accuracy for the system although the intensity alone did not 

perform better than the level of selecting the correct CL level by chance. This suggests 

that the temporal variation of the intensity is useful in characterizing the cognitive load 

level. Furthermore, when a combination of the intensity and the shifted delta feature were 

used, the accuracy obtained on the Stroop test corpus is again much higher than that of 

the Reading and Comprehension corpus, similar to the results found when using the pitch 

feature.  

Although both intensity and pitch are source-based features, they capture different 

aspects of the voice source. The cognitive load information contained in these two 

features can therefore complement each other. As such, the incorporation of the 

information from these two features should be considered as this can improve the 

performance of the system. The classification accuracies of the fusion of the intensity-

based and the pitch-based systems with and without the shifted delta feature (SDF) are 

provided in Table 3.5.  
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           Table 3.5: Accuracies of the fusion of pitch-based and intensity-based systems. 

Corpus Accuracy (%) 
Without SDF With SDF 

Stroop test 
Reading and Comprehension 

39.1 
36.3 

68.6 
44.4 

 

It can be observed from Tables 3.3, 3.4, and 3.5 that the classification accuracies of 

the fusion of pitch-based and intensity-based systems are higher than those of the system 

based on individual features. This shows that the CL information contained in the pitch 

and intensity features are complementary as expected.  

3.4.1.3 Source Mel frequency cepstral coefficients (SMFCC) 

This feature is a compact representation of the spectral envelope of the glottal 

waveform. It is extracted through a filtering process where a series of triangular filters 

that are equally spaced in the mel frequency scale are used to filter the estimated glottal 

waveform.  

To compute the SMFCCs, a windowing process is applied to the glottal waveform to 

segment it into short-time frames. The magnitude spectrum is computed for these glottal 

frames and it is then multiplied by the magnitude responses of the filters to compute the 

average energies within each filter band. The logarithm of these energies is then taken in 

order to reduce their dynamic range. The discrete cosine transform (DCT) is then applied 

to this results, and finally the SMFCCs are obtained as the first N DCT coefficients. This 

allows the reduction of the dimension of the feature vector at the cost of detailed 

information about the magnitude spectrum. The SMFCC feature extraction process is 

summarized in the block diagram shown in Figure 3.9. In this section, twenty filters were 

used to compute the spectrum energies and the number of DCT coefficients used is         

N = 12.  

 

Figure 3.9: Block diagram of SMFCCs extraction. 



48 
 

Figure 3.10 shows the magnitude spectra of glottal waveforms computed on two 25 

ms segments of speech of the phoneme /uw/ spoken by a female speaker under two 

different load levels. The variation of the spectrum of the glottal waveform due to 

changes in the load level can be observed from this figure. For instance, the distance 

between adjacent pulses of the spectrum (which is equal to the pitch F0), of the low CL is 

less than that of the high CL. This again indicates that pitch F0 increases when the CL 

level increases, which agrees with the observation in Figure 3.8.  

 

 
Figure 3.10: Magnitude spectrum of the glottal waveform of the phoneme /uw/                                              

spoken under low CL (a) and high CL (b).  

 

Furthermore, the distribution of the first coefficients of SMFCC computed from the 

words ‘gray’ spoken by a female speaker under three different load levels in the Stroop 

test corpus is shown in Figure 3.11. It can be seen from this figure that discrimination of 

SMFCC for different levels of CL exists and hence this feature can be used to classify 

cognitive load levels.  

The classification accuracies when the SMFCC feature is used as front-end feature in the 

classification system, with and without concatenating its shifted delta feature, are shown 

in Table 3.6.  
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Figure 3.11: Distribution of the first SMFCC of the word ‘gray’ for low, medium and high CL.  

Table 3.6: Classification accuracies using SMFCC. 

Corpus Accuracy (%) 
SMFCC SMFCC and its shifted delta feature 

Stroop test 
Reading and Comprehension 

38.2 
34.2 

58.9 
38.5 

 

It can be seen from Table 3.6 that all the systems based on the SMFCC feature have a 

high classification accuracy, except for the system using the static SMFCC feature on the 

Reading and Comprehension corpus. In addition to the usefulness of the other two voice 

source related features namely pitch and intensity, this indicates that voice source related 

speech features are effective for CL classification.  

3.4.2 Filter-based features  

3.4.2.1 Formant frequencies 

When the excitation signal passes through the vocal tract it is shaped by the 

resonance characteristic of the vocal tract. This produces a number of peaks in the 

magnitude spectrum of the speech signal that are located at the resonant frequencies of 

the filter modeling the vocal tract, as shown previously in Figure 3.4. These peaks are 

dominant spectral components of speech and are referred as speech formants.  

In terms of human speech production modeling, the vocal tract is modeled as an all-

pole system or filter whole parameters can be estimated by linear prediction analysis. The 

formant frequencies can then be estimated from the magnitude response of the all-pole 

system. In this thesis, the formant frequencies are extracted using the Wavesurfer/Snack 

toolkit [86] and the order of the all-pole system used is 10.  

The classification accuracies of the automatic cognitive load classification system 

using the frequency of the first three formants, with and without the concatenation of their 

shifted delta feature (SDF), as front-end features are provided in Table 3.7.
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Table 3.7: Classification accuracies using formant frequency. 

Corpus 
Accuracy (%) 

Formant 
frequency  

Formant frequency 
and its SDF 

Stroop test 
Reading and Comprehension 

57.4 
31.9 

75.6 
45.9 

 

It can be seen from Table 3.7 that the formant frequency provided high performance 

for all the classification systems, except for the system using only the formant frequency 

on the Reading and Comprehension corpus. This shows that formant frequencies are 

useful for the classification.  

Furthermore, as formant frequency is a filter-based feature while pitch and intensity 

are the source-based features, the information contained in the formant frequency can 

complement that contained in pitch and intensity. Incorporating the cognitive load 

information from the formant frequency with that from either the pitch or intensity can 

improve the performance of the system. The classification accuracies of the fusion of the 

formant-based system with either the pitch-based or intensity-based system, with and 

without using the shifted delta feature (SDF), are provided in Tables 3.8 and 3.9 

respectively. 
 

Table 3.8: Accuracies of fusion of formant-based and pitch-based systems. 

Corpus Accuracy (%) 
Without SDF With SDF 

Stroop test 
Reading and Comprehension 

60.3 
37.0 

75.6 
46.7 

 
Table 3.9: Accuracies of fusion of formant-based and intensity-based systems. 

Corpus Accuracy (%) 
Without SDF With SDF 

Stroop test 
Reading and Comprehension 

64.1 
38.5 

78.2 
51.9 

 
The results in the Tables 3.3, 3.4, 3.7, 3.8 and 3.9 show that the classification 

accuracies of the fusion of the formant-based system with that of either pitch-based or 

intensity-based systems are higher than the classification accuracy of the systems based 

on individual speech features. This shows that incorporating the information from a filter-

based feature e.g. formant frequencies, and a source-based feature e.g. pitch or intensity, 

increases the amount of cognitive load information, due to the fact that the information 

contained in these features is complementary. Furthermore, it is interesting to see that the 
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improvement of accuracy when fusing the pitch-based and the formant-based systems is 

less than that when fusing the intensity-based and formant-based systems. This is most 

probably because the pitch feature is more correlated to the formant feature than the 

intensity feature.  

3.4.2.2 Filter Mel frequency cepstral coefficients (FMFCC) 

The FMFCC feature is a compact representation of the spectral envelope of the vocal 

tract filter. In order to compute this feature, the spectral envelope of the vocal tract filter 

is estimated from the linear prediction coefficients which were obtained from the 

implementation of Iterative Adaptive Inverse Filtering algorithm mentioned in Section 

3.1.3. This spectral envelope is then passed through a filterbank of twenty mel-scale 

filters. Then FMFCCs are then obtained as the first twelve coefficients of the discrete 

cosine transform of the logarithm of the filter output energies.  

Figure 3.12 shows the spectral envelope of the vocal tract filters computed on a 25 

ms segment of the phoneme /uw/ uttered by a female speaker under two different load 

levels. The variation of the spectral envelope of the vocal tract filter due to cognitive load 

can be observed from this figure. For instance, the second formant frequency decreases 

when the load increases, as found in [54]. Moreover, the bandwidths of the formants of 

the low CL speech are larger than those of the high CL speech.  

 
Figure 3.12: Spectral envelope of vocal tract filter of phoneme /uw/                                                       

uttered under low CL (a) and high CL (b). 
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The distribution of the first FMFCC computed on the words ‘gray’ spoken by a 

female speaker with three different levels of cognitive load in the Stroop test corpus are 

shown in Figure 3.13. It can be seen from this figure that there is discrimination of 

FMFCC of different levels of cognitive load. Therefore, this feature can be useful for the 

classification.   

 
Figure 3.13: Distribution of the first FMFCC of the word ‘gray’ for low, medium and high CL.  

The classification accuracies obtained when FMFCC features were used as front-end 

features in the classification system are presented in Table 3.10. Furthermore, as FMFCC 

captures the variation of the spectral envelope of the vocal tract filter while SMFCC 

captures the variation of the spectral envelope of the source excitation signal, the 

cognitive load information contained in these two features can be complementary. It is 

therefore expected that incorporating the information from these two features can improve 

the performance of the classification system. The classification accuracies of the fusion of 

the FMFCC-based and SMFCC-based systems, with and without the shifted delta features 

(SDF), are presented in Table 3.11.  

Table 3.10: Classification accuracies using FMFCC. 

Corpus Accuracy (%) 
FMFCC FMFCC and its shifted delta feature 

Stroop test 
Reading and Comprehension 

41.1 
36.2 

70.4 
47.4 

 

Table 3.11: Accuracies of fusion of SMFCC-based and FMFCC-based systems.  

Corpus Accuracy (%) 
Without SDF With SDF 

Stroop test 
Reading and Comprehension 

43.2 
39.1 

76.9 
52.6 

 

It can be seen from Table 3.10 that all the classification systems based on the 

FMFCC feature produced high accuracy. This suggests that there is CL information 
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contained in the FMFCC features and that they are useful for the classification. 

Furthermore, it can be observed from Tables 3.6, 3.10, and 3.11 that the fusion of 

SMFCC-based and FMFCC-based systems produces higher classification accuracy than 

systems based on individual features. This indicates that the information in these two 

features is complementary, as expected.   

3.4.3 Combined features  

3.4.3.1 Mel frequency cepstral coefficients (MFCCs) 

The MFCCs are a compact representation of the speech spectral envelope estimated 

based on the subband spectral powers obtained using a series of filters. The computation 

of this feature follows exactly the same steps as the computation of SMFCC as shown in 

Figure 3.9, except that the input is a speech signal rather than the glottal waveform. As 

MFCCs are computed from the magnitude spectrum of speech, the information from both 

the voice source and the vocal tract filter is contained in this feature. This feature can 

therefore be considered as a combined feature. The accuracy of the CL classification 

system when MFCCs are used at the front-end are presented in Table 3.12.  

Table 3.12: Classification accuracies using MFCCs. 

Corpus Accuracy (%) 
MFCCs MFCCs and their shifted delta feature 

Stroop test 
Reading and Comprehension 

45.6 
40.0 

74.3 
60.7 

 

The results in Table 3.12 indicate that the accuracies of all MFCC-based 

classification systems are significantly higher than the level of selecting the correct CL 

level by chance. The MFCC feature is therefore very useful for classifying the load levels.  

3.4.3.2 Spectral slope and spectral intercept  

The spectral slope and spectral intercept are computed from a linear approximation to 

the speech spectrum. The spectral slope characterizes how quickly energy drops as 

frequency increases and the spectral intercept is an approximation of the energy at zero 

frequency. In this thesis, a straight line that best fits the magnitude spectrum of speech in 

the least square sense is first estimated. The spectral slope (a) and spectral intercept (b) 

are then obtained as the slope and the intercept of this straight line as shown in Fig. 3.14.  

The accuracy of the classification system obtained when the combination of the 

spectral slope and spectral intercept is used at the front-end of the system is shown in 

Table 3.13.  
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Table 3.13: The accuracies using combination of spectral slope (SS) and intercept (SI). 

Corpus Accuracy (%) 
SS and SI SS, SI and their shifted delta features 

Stroop test 
Reading and Comprehension 

40.4 
41.5 

63.7 
46.7 

 

The results in Table 3.13 indicate that the combination of spectral envelope and 

spectral intercept are useful for CL classification. Furthermore, like other features, the 

temporal information of this feature is very important for the classification.  

 

Figure 3.14: The estimation of spectral slope and spectral intercept features. 

3.4.3.3 Group delay feature (GD) 

The MFCC feature is extracted from the magnitude spectrum of speech. The 

information of the phase spectrum is therefore ignored by using this feature. The group 

delay feature, on the other hand, represents the spectral phase [87-88]. Cognitive load 

information contained in the group delay feature is therefore expected to complement that 

contained in the MFCC feature. The group delay feature therefore can be used to improve 

the performance of the MFCC-based cognitive load classification system.  

In order to compute the group delay feature, linear prediction analysis is used to 

estimate the coefficients of the all-pole model of the vocal tract filter. The phase response 

f  of this all-pole model is then estimated. The group delay )( fG  is obtained as the 

negative of the differentiation of this phase response as  
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df

fdfG )(                                                                                   (3.6)  

At this stage, the dimension of the group delay is very large. The discrete cosine 

transform (DCT) is applied to the original group delay so that a compact representation of 

the group delay can be obtained as the first ten DCT coefficients. The process of group 

delay feature extraction is briefly described in Figure 3.15.  

 

Figure 3.15: Extraction of the group delay feature [89]. 

 

The classification accuracies obtained when using group delay as the front-end are 

reported in Table 3.14. In addition, the classification accuracies of the fusion of the group 

delay feature based and the MFCC-based systems are provided in Table 3.15. 

Table 3.14: Classification accuracies using group delay feature (GD). 

Corpus Accuracy (%) 
GD GD and its shifted delta feature 

Stroop test 
Reading and Comprehension 

40.7 
43.7 

72.0 
52.5 

 
Table 3.15: Accuracies of fusion of group delay and MFCC features. 

Corpus Accuracy (%) 
Without SDF With SDF 

Stroop test 
Reading and Comprehension 

46.5 
45.2 

76.3 
62.6 

 

It can be seen from Table 3.14 that group delay feature provided high accuracy for 

the classification system. This indicates that there is the cognitive load information 

contained in group delay feature and that it is useful for the classification system. 

Furthermore, the accuracies presented in Tables 3.12, 3.14, and 3.15 indicate that the 

fusion of the MFCC-based system and the group delay based system produces higher 

classification accuracy than the systems based on individual features. This shows that the 

cognitive load information contained in the group delay and the MFCC features are 

complementary.  
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3.4.3.4 Frequency modulation (FM) 

The frequency modulation (FM) feature is motivated by the AM-FM model of speech 

signals which was inspired by evidence of such modulation in speech production. 

According to the AM-FM model, the speech signal ns  is expressed as the sum of all 

resonances [90]   

     
K

k
kk nnans

1
cos                                                                         (3.7)  

where K is the total number of resonances, nak  and nk  are the amplitude and the 

phase of the kth resonance respectively, and n is the sample index. A series of band pass 

filters is used to isolate these resonances and extract the frequency modulation feature 

corresponding to each resonance. The output of the kth filter can be expressed in the form 

of the AM-FM model as [90] 
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where nqk  is the FM component, sf  is the sampling frequency ckf  is the center 

frequency of the kth band pass filter.  

Numerous methods to estimate FM from speech have been proposed over the years 

[91]. Among them, the method based on the second-order all-pole model has been shown 

to produce a considerably more consistent estimate [91]. In this method a second-order 

all-pole resonator, a simple but effective model to characterize the band pass filter, is used 

to model the FM component in each filter band. The parameters of this resonator are 

estimated using linear prediction and the frequency modulation feature is obtained from 

the pole angle of the estimated all-pole resonator. The frequency modulation features 

used for all the experiments reported in this thesis are extracted using this second-order 

all-pole model method. A bank of twenty one Gabor filters is used to isolate the 

resonators [92].  

The accuracies of the classification system when frequency modulation features are 

used as the front-end are shown in Table 3.16. This suggests that cognitive load level is 

characterized by the FM features. However, compared to the MFCC-based system, the 

FM-based system is less accurate which shows that FM features are less important than 

MFCC for the classification. Furthermore, the accuracies of the fusion of FM-based and 

the MFCC-based systems, with and without using the shifted delta features (SDF), are 

provided in Table 3.17.  
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Table 3.16: Accuracies using frequency modulation (FM) feature. 

Corpus Accuracy (%) 
FM FM and its shifted delta feature 

Stroop test 
Reading and Comprehension 

45.0 
36.3 

51.1 
40.7 

 
Table 3.17: Accuracies of fusion of FM-based and MFCC-based systems. 

Corpus Accuracy (%) 
Without SDF With SDF 

Stroop test 
Reading and Comprehension 

49.1 
43.2 

75.0 
63.0 

It can be seen from Table 3.16 that the frequency modulation feature provided high 

performance for the system. Furthermore, it can be seen from Tables 3.12, 3.16 and 3.17 

that the fusion of the MFCC-based and FM-based systems produce higher classification 

accuracy than those of the systems based on individual features. This suggests that the 

information in the FM feature complements that in the MFCC feature.  

3.5 The effectiveness of spectral centroid features 

The effectiveness of MFCC, as presented in Section 3.4.3.1, suggests that 

information related to the spectral envelope is useful for cognitive load (CL) 

classification. However, MFCC does not completely characterize the spectral envelope as 

some details about the speech spectrum, such as the spectral energy distributions within 

filter subbands, are not captured by MFCC. This is because in this feature, information in 

each subband is represented by a single value that represents the total spectral power 

contained in that subband. Spectral centroid features can be used to capture more 

information about these subband spectral distributions and hence can be useful for 

classifying the CL levels.  

The spectral centroid frequency (SCF) is an estimate of the ‘center of gravity’ of the 

spectrum within each subband. Originally proposed as a feature for speech recognition 

systems, it has been reported that the SCF is a formant-like feature, as it provides the 

approximate location of formant frequencies within the subbands [93]. However, this 

feature can be estimated easily and reliably, unlike the formant feature [93]. Also since 

features based on formant frequencies have been recognized to be effective for CL 

classification, as presented in Section 3.4.2.1, we can expect that the SCF will also prove 

to be useful for cognitive load classification systems. In addition to spectral centroid 

frequency, the use of another feature termed spectral centroid amplitude (SCA), which is 

the weighted average magnitude spectrum in the subband, is also proposed in this section.  
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3.5.1 Feature extraction 

The spectral centroid features are extracted from speech frames as follows: Let s[n] 

represent a speech frame of length N in the time domain where n [0, N-1] and let S[f] 

represent the spectrum of this frame. Then S[f] can be divided into M subbands by using a 

series of Gabor filters [92] whose frequency responses are Wm[f], where m [1, M]. 

Assume that the mth subband has a lowest frequency lm and a highest frequency um. 

Each of the two spectral centroid features can be calculated from S[f] for the mth subband 

as follows.  

The spectral centroid frequency (SCF) is computed as the weighted average 

frequency for a given subband, where the weights are the normalized energy of each 

frequency component in that subband, expressed as  

          
m

m

m

m

uf

lf
m

uf

lf
m

m

fSfW

fSfWf
SCF                                                                (3.8) 

The final SCF vector of each frame is obtained by concatenating all the SCFm. 

The spectral centroid amplitude (SCA) is the weighted average magnitude spectrum 

in the subband, with the frequency serving as weights, as shown in equation (3.9) [94]. 
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A feature vector is obtained by concatenating all SCAm in that frame, then a 

logarithm is applied to reduce the dynamic range of the feature vector. The discrete cosine 

transform (DCT) is then applied to obtain the final SCA feature vector. The use of the 

DCT is intended to decorrelate the feature vector, as it does when conventionally used in 

computing MFCCs. The computation of the SCA is expressed as 

km
M

SCA
M

kSCA
M

m
mk 12

2
coslog1 1

0
                                 (3.10)       

where 1,,0 Mk ; 10 ; 2k for 11 Mk  
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In the case of the SCF the DCT is not applied similar to [93] as it is a frequency 

based feature. This decision is supported by the choice not to apply the DCT to another 

similar frequency based feature called the frame-averaged frequency modulation feature 

in [95]. Henceforth, SCFm and SCAm will refer to the feature values in each subband, 

whereas SCF and SCA will refer to the final spectral centroid feature vectors. 

As the spectral centroid frequency and spectral centroid amplitude features are 

computed from the spectrum of speech containing information from both the voice source 

and vocal tract filter, they are considered to be combined features. The stages involved in 

the computation of the spectral centroid features are illustrated in Figure 3.16.   

 

 

Figure 3.16: Block diagram of SCF & SCA feature extraction [94]. 

3.5.2 Complementary behavior between spectral centroid and MFCC features  

As previously mentioned, the MFCCs are computed from the total energy in each 

subband and hence will only reflect the variation of the total energy in a subband. 

However, there are instances where the distribution of energy within each subband varies 

but the total energy does not and MFCCs will not reflect this. The use of frequency as 

weights for computing the SCAm allows for the variations in the spectral energy 

distribution in these instances to be reflected in the SCAm values, as shown in Figure 

3.17. The energies of the two spectra shown in this figure are the same but the SCAm 

values are different.  

As explained previously, the spectral centroid frequency (SCF) and spectral centroid 

amplitude (SCA) features capture different aspects of the spectral distribution in each 

subband and are therefore expected to complement each other. The complementary nature 

of these features is illustrated in Figure 3.18, which shows the spectral centroid features 

corresponding to different examples of synthetic spectra in two different subbands. These 

spectra comprise of straight lines with varying slopes. It can be observed that the resultant 

variations in SCF and SCA are very different. Moreover, there are regions of the energy-

slope plane where one of the two features varies more than the other. In Figure 3.18, lines 
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of constant energy correspond to constant MFCC feature values. Hence MFCCs cannot 

distinguish between them, by way of contrast with the SCA and SCF. The use of the 

frequency as the weight also makes the SCA values in different subbands very different 

as shown in Figures 3.18c and 3.18d, though these subbands have the same spectral 

distributions.    

 

 
Figure 3.17: Example of the spectra in the mth subband ],[ HL ff .                                                        

The solid line is the spectrum 1 and the dashed line is the spectrum 2 after [94].  

 

 

Figure 3.18: The variation of the SCFm and SCAm in two subbands (a) & (c) for the low frequency subband, 

and (b) & (d) for the high frequency subband. 
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3.5.3 Cognitive load (CL) discrimination ability of spectral centroid features  

Figure 3.19 shows the spectral centroid features as well as the spectral envelopes for 

low, medium and high cognitive load levels extracted from an utterance of the vowel /ey/ 

spoken by a female speaker in the Stroop test corpus. In this example, the spectral 

centroid features were extracted by splitting the speech spectrum into six non-overlapping 

equally spaced subbands in the mel scale. The number of subbands was chosen to make 

visualization simple. It can be observed that the roll off in the spectral envelope is steeper 

for high CL. Since the SCAm are computed as the weighted average spectral power in 

each subband, this large negative slope results in the value of the high frequency SCAm 

for high cognitive load being substantially lower than that of low cognitive load. On the 

other hand, the low frequency SCAm of high cognitive load is larger than that of low 

cognitive load. In addition to the differences in spectral slopes, it can also be observed 

that the spectral power distributions in the individual subbands are different, which results 

in the SCFm in each subband varying between different cognitive load levels.  

 

 

Figure 3.19: Subband spectral centroid frequencies (SCFm), subband spectral centroid amplitudes (SCAm), 

and linear predictive spectral envelope of the vowel /ey/ under (a) high CL, (b) medium CL and (c) low CL. 

SCFm are shown by locations of the stems, SCAm are shown by the amplitude of the stems, the subband 

boundaries are shown by the dotted vertical lines, and the spectral envelope is shown by the solid 

continuous curve. 

high CL 

medium CL 

low CL 
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Figure 3.20 shows the statistical spread of the six coefficients of spectral centroid 

frequency (SCF) and spectral centroid amplitude (SCA) features, computed from speech 

of the word ‘blue’ spoken by a female speaker in the Stroop test corpus. In this figure, the 

thick bar extends from the 15th to the 85th percentile, the thin bar extends from the 5th to 

the 95th percentile, and the middle strip indicates the median of the distribution. The 

potential for discrimination between different cognitive load levels can be observed from 

this figure.   

 

Figure 3.20: Statistical variation of the six coefficients of (a) SCF and (b) SCA over the three levels of CL 

speech of the word ‘blue’. The thick bar extends from the 15th to the 85th percentile and the thin bar extends 

from the 5th to the 95th percentile. The middle strip indicates the median. 

SCF feature 

SCA feature 
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3.5.4 Performance of the spectral centroid features  

The spectral centroid features used in the classification experiments in this section 

are computed using a bank of twelve Gabor filters which are equally spaced in the mel 

scale. The number of filters was chosen to be 12 so that the SCF and SCA feature vectors 

have the same dimensions as the other cepstral-based feature vectors e.g. MFCC, SMFCC 

and FMFCC. This will make the comparison of the effectiveness of these features more 

straightforward.   

The classification accuracies obtained when the spectral centroid features are used 

individually as the front-end of the classification systems are reported in Table 3.18. The 

classification accuracies of the fusion system of these two features, and of each of these 

two features with the MFCC features, with and without concatenating with the shifted 

delta feature (SDF), are also presented in this table.  

 
Table 3.18: The accuracies using individual SCF, SCA, and fusion between SCF and SCA,                      

SCF and MFCC, SCA and MFCC. 

 
Feature 

 
Corpus 

Accuracy (%) 
Without 

SDF With SDF 

SCF Stroop test 
Reading and Comprehension 

48.0 
44.4 

73.7 
57.0 

SCA Stroop test 
Reading and Comprehension 

54.4 
34.1 

80.9 
48.9 

Fusion SCF and    
SCA 

Stroop test 
Reading and Comprehension 

59 
47.4 

82.7 
58.5 

Fusion SCF and 
MFCC 

Stroop test 
Reading and Comprehension 

54.1 
49.8 

76.3 
63.0 

Fusion SCA and 
MFCC 

Stroop test 
Reading and Comprehension 

56.8 
42.1 

82.4 
62.2 

 

It can be observed from Tables 3.18 and 3.12 that both spectral centroid features 

yield comparable classification accuracy for the system compared to the traditional 

MFCC feature. Furthermore, the fusion of SCF-based and SCA-based systems produced 

higher accuracy compared to the systems based on individual SCF or SCA features. This 

indicates that the cognitive load information contained in the spectral centroid frequency 

and spectral centroid amplitude features is complementary, as discussed in Section 3.5.2. 

It can also be seen from these tables that the fusion of either SCF-based or SCA-based 

systems with an MFCC-based system consistently outperforms the MFCC based system. 

This implies that the information contained in the spectral centroid features is 

complementary to that contained in the MFCC feature. Fusion of the SCF-based and 



64 
 

SCA-based systems with the MFCC-based system reduces the relative error rate by 8.9% 

and 31.5% respectively when compared to the MFCC-based system on the Stroop test 

corpus. In addition, the corresponding relative error rate reductions obtained on the 

Reading and Comprehension corpus are 5.9% and 3.8%.  

3.6 Comparison and discussion of performance of different speech 

features 

Table 3.19: Summary of accuracies of different speech features,                                                         

with and without using the shifted delta feature (SDF).  

 

 

Category 

 

 
 

Feature 
 

Accuracy (%) 

Stroop test Reading and 
Comprehension 

No 

SDF 

With 

SDF 

No 

SDF 

With  

SDF 

Source-
based 

 

Pitch (F0) 32.8 52.2 33.3 37.0 

Intensity  32.8 56.9 34.1 41.5 

Source MFCC (SMFCC) 38.2 58.9 34.2 38.5 

Filter-
based 

 

Formant frequencies (FF) 57.4 75.6 31.9 45.9 

Filter MFCC (FMFCC) 41.1 70.4 36.2 47.4 

 

 

 

Combined  

 

MFCC 45.6 74.3 40.0 60.7 

Spectral slope and intercept (SSI) 40.4 63.7 41.5 46.7 

Group delay (GD) 40.7 72.0 43.3 52.5 

Frequency modulation (FM) 45.0 51.1 36.3 40.7 

Spectral centroid frequency (SCF) 48.0 73.7 44.4 57.0 

Spectral centroid amplitude (SCA) 54.4 80.9 34.1 48.9 

 

 

 

 

Fusion 

Pitch and formant frequency 60.3 75.6 37.0 46.7 

Intensity and formant frequency 64.1 78.2 38.5 51.9 

Pitch and Intensity 39.1 68.6 36.3 44.4 

SMFCC and FMFCC 43.2 76.9 39.1 52.6 

MFCC and group delay  46.5 76.3 45.2 62.6 

MFCC and frequency modulation 49.1 75.0 43.2 63.0 

SCF and MFCC 54.1 76.3 49.8 63.0 

SCA and MFCC 56.8 82.4 42.1 62.2 

SCF and SCA 59.0 82.7 47.4 58.5 
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The classification accuracies of all the speech features used in this chapter are 

summarized in Table 3.19 for ease of comparison. Many interesting trends can be 

observed from this table. 

Both source-based and filter-based features are useful for classifying cognitive load 

levels. This means that both the voice source and the vocal tract filter are important in 

characterizing cognitive load variation. Therefore, an effective front-end of the 

classification system needs to utilize both source-based and filter-based features. 

However, it can be noted that filter-based features e.g. formant frequencies (FF) and filter 

Mel frequency cepstral coefficients (FMFCC) were superior to the source-based features 

e.g. the pitch (F0), intensity and source Mel frequency cepstral coefficients (SMFCC). 

The better performance of the filter-based features when compared to the source-based 

features suggests that in the source-filter model of human speech production system, the 

filter is more important than the source in characterizing variations of the load level.  

The combined speech features e.g. MFCC, SCF and SCA, perform better than the 

source-based features e.g. SMFCC, or filter-based features e.g. FMFCC for the 

classification. This comparison is straightforward as these features are computed in the 

frequency domain and have the same dimension. This is probably because the combined 

features capture the information comprehensively as they are estimated from the speech 

spectrum which includes information from both the source and the filter. Conversely, the 

features estimated from either source or filter only may lack comprehensiveness in 

capturing CL information. This again suggests that cognitive load is characterized by both 

the source and filter components of the human speech production system.  

It was also observed that the concatenation of a feature with its shifted delta feature 

(SDF) consistently improves the performance of the system. This suggests that temporal 

information of the speech features is very important for classifying the load level. 

Because of this, all the research in the remainder of this thesis is performed with the 

combination of the speech features and their shifted delta features.  

It can be seen that fusion systems based multiple features consistently produced 

higher classification accuracy than the single feature systems. This is probably because 

different speech features characterize different aspects of speech. Hence the cognitive 

load information contained in them can be complementary. Consequently, incorporating 

the information from different speech features can increase the amount of the cognitive 

load information to the system and improve its performance.   
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It should be noted that there is a consistent trend in classification accuracies of 

different speech features on the two corpora. That is any speech features that perform well 

on the Stroop test corpus also perform well on the Reading and Comprehension corpus 

even though these two corpora are collected under very different conditions. This 

consistency indicates that the experiments conducted are independent of variations in 

databases. In addition, when the shifted delta features are used, the classification 

accuracies obtained on the Stroop test corpus are significantly higher than the 

corresponding accuracies obtained on the Reading and Comprehension corpus. This is 

probably due to the greater variability of speech features in the Reading and 

Comprehension corpus due to the higher level of phonetic variability when compared to 

the Stroop test corpus.  

Among the features used in this investigation, MFCC, SCF and SCA provide the 

highest accuracies for the system when the speech features and their shifted delta features 

are used, presented in bold in Table 3.19. These features are computed from the spectrum 

of speech and are henceforth referred to as spectral features in this thesis. Due to their 

outperformance, they are chosen for further study in the remainder of this thesis.  

 

3.7 Summary  

This chapter initially carried out a human listening test on a subset of the Stroop test 

corpus. The high accuracy of this test implies that cognitive load specific patterns exist in 

speech features and hence it is possible for an automatic speech-based cognitive load 

classification system to classify the load level of a speech segment based on these 

patterns. Furthermore, it was found that the breath pattern, speech rate, the insertion of 

filler sounds e.g. ‘uh’ and ‘ah’, and the intonation of the utterance are the most important 

speech cues used by humans to identify cognitive load levels. The usefulness of the 

intonation in this test supports the effectiveness of the shifted delta feature of pitch for an 

automatic speech-based cognitive load classification system in this chapter and in 

previous studies [3, 5].  

The results of the investigation of the effectiveness of source-based and filter-based 

speech features indicated that although the filter-based features are more effective, both of 

these features are effective for cognitive load classification. This suggests that in the 

source filter model of human speech production, the filter is more important than the 
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source in characterizing the variation of the load level. Nevertheless, an effective 

classification system should utilize both types of the features.   

The use of the spectral centroid features (SCF and SCA) for CL classification was 

proposed. Fusion of these two features or either each of them with the MFCC feature 

consistently provided higher accuracy than systems based on individual features. This 

indicates that cognitive load information is contained in the spectral centroid features. 

These features are complementary to each other and are complementary to the MFCC 

feature. Fusion of the SCF-based and SCA-based systems to the MFCC-based system 

reduced the relative error rate by 8.9% and 31.5% respectively when compared to the 

MFCC-based system on the Stroop test corpus. The corresponding relative error rate 

reductions obtained on the Reading and Comprehension corpus are 5.9% and 3.8%. 

The spectral features, namely MFCC, spectral centroid frequency and spectral 

centroid amplitude have been shown to provide the highest classification accuracies for 

the system compared to all of the other features used. This motivates the use of these 

features for the study of cognitive load classification in the remainder of this thesis. In 

addition, the temporal information of the speech features captured by the shifted delta 

features was shown to be very important for classifying the load level. Hence, the speech 

features are always combined with their shifted delta features when used for classification 

experiments in the rest of this thesis.  
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4. Chapter 4: Multi-band approach for cognitive 

load classification 
 

4.1 Introduction 
 

The study on cognitive load classification presented in Chapter 3 was conducted 

under clean condition where the speech used in both the training and testing phases is 

clean, i.e. not corrupted by noise. However, in many real-life applications, cognitive load 

has to be estimated in practical scenarios where speech is recorded in noisy environments 

such as in cars, over telephone channels or in air traffic control rooms. Such noisy 

conditions would cause a mismatch between the feature distribution of the training speech 

and that of the test speech which consequently can degrade the performance of the 

cognitive load classification system significantly. Techniques to reduce the effect of noise 

and improve the performance of the system under noisy conditions are therefore 

necessary to make it usable in real-life applications.  

Speech features from individual subbands are corrupted to varying levels depending 

upon the type of noise and therefore have different levels of reliability. In this thesis, the 

approach taken to develop the cognitive load classification system based on features that 

are extracted from the whole speech spectrum e.g. MFCC, spectral centroid frequency 

and spectral centroid amplitude is referred to as the full-band approach. This approach 

may not be the most effective as it disregards the unequal levels of reliability of speech 

features in different frequency bands. Unlike systems based on the full-band approach, 

systems based on the multi-band approach, which will be discussed in this chapter, utilize 

the speech features extracted from different subbands independently. The classification 

system based on this approach can therefore reduce the effect of noise by de-emphasizing 

the contribution of speech features from the subbands that are less reliable. It has been 

shown in studies of speech recognition and speaker recognition that the multi-band 

approach provides a higher performance than the full-band approach for systems in noisy 

conditions [96-97].  

Furthermore, spectral features such as MFCC and spectral centroid features used in 

Chapter 3 were extracted through the mel filterbank. This filterbank was chosen because 

it is commonly used in other classification systems such as speech recognition, speaker 
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recognition and emotion recognition [95, 98-99]. However, in speaker recognition it has 

been shown that speaker specific information is not distributed according to the mel 

frequency scale and that the mel filterbank is not the optimal filterbank for speaker 

recognition [100]. Similarly in cognitive load classification, the load information may not 

be distributed according to the mel frequency scale. This implies that the amounts of 

cognitive load information contained in different mel subbands (the subbands have the 

same widths in mel scale) may be different as will be presented in Section 4.2.2.2. 

Therefore even in clean conditions, it may be possible to improve the performance of the 

cognitive load classification system based on a multi-band approach by emphasizing the 

contribution of speech features in the subbands containing more cognitive load 

information. However, this cannot be achieved using the full-band approach as the speech 

features used in this approach are extracted from the whole spectrum.  

The main aim of this chapter is to investigate the effectiveness of the multi-band 

approach and compare it with the full-band approach for a cognitive load classification 

system. This chapter initially analyzes the spectral distribution of cognitive load 

information in different mel subbands through classification experiments. It then studies 

the effectiveness of the multi-band approach for classification under clean conditions. 

This is followed by an investigation of the reliability of speech features for classification 

in different subbands under noisy conditions. This chapter then looks at the effectiveness 

of different weighting schemes for a multi-band cognitive load classification system. 

Finally, it investigates the effectiveness of the multi-band approach and compares it with 

the full-band approach for cognitive load classification under noisy conditions.  

4.2 Motivation for using a multi-band approach  
Two of the most important aspects affecting the effectiveness of speech features in a 

subband under noisy conditions are how severely these speech features are corrupted by 

noise and how much cognitive load (CL) information is contained in them. 

4.2.1 Advantage of multi-band over full-band approach 

4.2.1.1 Effect of band-limited noise  

An illustration of the impact of band-limited noise, i.e. noise limited to a frequency 

region smaller than the bandwidth of speech, on the full-band and subband speech 

features is shown in Figure 4.1. This figure plots the mean square error of the cepstral 

coefficients computed on clean speech and noisy speech using both the full-band and 

multi-band approaches. The noisy speech in this example is obtained by contaminating 
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clean speech with a 100 Hz sinusoid. This sinusoid is used to simulate a band-limited 

noise as its power only exists at 100 Hz. For the full-band approach, six cepstral 

coefficients were computed from speech with a bandwidth of 8 kHz. For the multi-band 

approach, three cepstral coefficients were extracted from each of the two mel subbands of 

speech spectrum. It can be seen from Figure 4.1 that in the full-band approach all the 

cepstral coefficients are affected by noise. This is indicated by the large mean square 

errors. For the multi-band approach, the three cepstral coefficients extracted from the 

second subband are almost unaffected by the band-limited noise, as indicated by the very 

small mean square errors. Thus under the effect of band-limited noise, the multi-band 

approach can be more effective than the full-band approach as it can emphasize (by 

assigning more weight to) the three cepstral coefficients from the second subband and de-

emphasize (by assigning less weight to) three cepstral coefficients from the first subband. 

 
Figure 4.1: Mean square error of cepstral coefficients of clean and noisy speech computed based on          

(a) full-band and (b) multi-band approaches. 
 

4.2.1.2 Effect of different types of noise  

Unlike band-limited noise, other types of noise are distributed over the whole 

bandwidth of the speech signal. Under the effect of these noise types, the severity to 
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which speech features in a subband are affected depends on the amount of noise present 

in that subband. Table 4.1 shows the distribution of spectral power of different noise 

types from the NOISEX-92 dataset in different subbands. These subbands were obtained 

by splitting the 8 kHz bandwidth of the speech signal into two subbands whose 

bandwidths are equal in the mel scale.  

Table 4.1: The distribution of noise power.  

Noise type 
The distribution of noise power in different subbands (%)  

Subband 1 (0-1895) Hz Subband 2 (1647-8000) Hz 

Pink 49.9 54.0 

White 24.0 89.0 

Leopard 88.8 12.4 

Factory 58.3 45.1 

F16 56.3 46.4 

Buccaneer 50.7 54.4 

Babble 81.8 21.5 

 

It can be observed from Table 4.1 that the distributions of noise power in the two 

subbands are very different. This suggests that speech features in different subbands will 

be corrupted by noise to different levels. For example, for noise types such as leopard, 

factory, F16 and babble, the amount of noise in the first subband is larger than that in the 

second subband. Therefore, under these noise conditions, the speech features in the first 

subband will be affected more. For the noise types such as pink, white and buccaneer, the 

amount of noise in the second subband is larger than those in the first subband. Hence 

under these noise conditions, the speech features in the second subband will be affected 

more. This in turn suggests that speech features in different subbands may have different 

levels of reliability. By emphasizing the speech features in a reliable subband and de-

emphasizing features in a less reliable one, the performance of a classification system 

based on the multi-band approach can be improved. 

4.2.2 Variation of CL information in different subbands 

The effectiveness of the spectral features does not reveal any information about how 

cognitive load information is distributed in different subbands. Determining how 

cognitive load information is distributed can be useful in improving the performance of a 

classification system based on a multi-band approach. This can be done by emphasizing 

speech features in the subbands containing large amounts of cognitive load (CL) 
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information. From the perspective of classification, the amount of CL information 

contained in a subband is proportional to the performance of the system using speech 

features in that subband. That is, speech features extracted from a subband containing a 

larger amount of cognitive load information should produce a classification system with a 

higher accuracy. This section investigates the distribution of CL information in different 

subbands by carrying out classification experiments using subband speech features. The 

obtained accuracies are then used as a measure of the amount of cognitive load 

information contained in individual subbands. 

4.2.2.1 Subband based feature extraction  

The cepstral coefficients are used in this chapter to perform CL classification. In 

order to compute the subband cepstral coefficients, a mel filterbank consisting of twenty 

four filters is split into a number of sub-filterbanks. Each sub-filterbank has the same 

number of consecutive filters from the original filterbank and two consecutive sub-

filterbanks have no filters in common. The sub-filterbanks obtained cover the frequency 

regions whose widths are equal in the mel frequency scale. The cepstral coefficients of 

the individual subbands are then obtained as the first few discrete cosine transform 

coefficients of the log energies of the filter outputs in corresponding subbands. Two 

approaches used to split the bandwidth of the speech signal into subbands employed in 

this thesis are the two subband (2-band) and three subband (3-band) approaches. An 

illustration of subband feature extraction for the 2-band approach is shown in Figure 4.2. 

 
Figure 4.2: Extracting cepstral coefficients for the 2-band approach. 
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The frequency regions of the subbands for the 2-band and 3-band approaches are: 

2-band approach: (0-1895), (1647-8000) Hz 

3-band approach: (0-1034), (868-3184), (2811-8000) Hz  

In the full-band approach, the discrete cosine transform (DCT) was applied to the log 

energies of the output of all twenty four filters and the first twelve DCT coefficients were 

used as the cepstral coefficients.  

The number of filters and cepstral coefficients for each subband of the 2-band and 3-

band approaches as well as the full-band approach are shown in Table 4.2.  

 
Table 4.2: The number of filters and cepstral coefficients of multi-band and full-band approaches. 

 Multi-band 
Full-band 

2-band 3-band 

Number of filters in each subband  12 8 24 

Number of cepstral coefficients in each subband 4 3 12 

 

4.2.2.2 Distribution of CL information in different mel subbands 

The accuracies obtained from classification experiments using the subband cepstral 

coefficients of the 2-band and 3-band approaches performed on the Stroop test corpus are 

presented in Figure 4.3 as a function of frequency.  

 

Figure 4.3: Classification accuracy of the subband features, for the clean speech of the Stroop test corpus. 
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The results in Figure 4.3 indicate that the speech features in the low frequency 

subbands make the classification system significantly more accurate than those in the 

high frequency subbands for both 2-band and 3-band approaches. This suggests that the 

low frequency subbands contain a significantly larger amount of cognitive load 

information than the high frequency subbands. Therefore, the multi-band approach can be 

expected to be more effective than the full-band approach for classifying the load levels, 

even in clean conditions, because it can emphasize the speech features in the low 

frequency bands in order to improve the performance of the system.  

4.3 Multi-band classification system 

4.3.1 Overview of multi-band system 

The cognitive load classification system based on the multi-band approach, 

henceforth called a multi-band system, utilizes the speech features computed from 

different subbands independently. The number of subbands used is one of the important 

parameters of the system. While a larger number of subbands may allow more flexibility 

in isolating the effects of band-limited noise, it would also result in a narrower bandwidth 

for each subband. This will decrease the amount of cognitive load information contained 

in each subband, which in turn reduces the cognitive load discrimination ability of the 

subband speech features. For speech recognition, it has been shown that a larger number 

of subbands produces lower accuracy than a smaller number of subbands [101]. Thus in 

this chapter, the multi-band system is developed based on two subband (2-band) 

approach. Furthermore, the performance of the three subband (3-band) multi-band system 

is presented in the last section of the chapter (Section 4.5.4) to consolidate the 

effectiveness of the multi-band approach.  

There are two methods that can be used to develop a classification system based on 

the multi-band approach, namely likelihood combination and feature combination [97].   

4.3.1.1 Likelihood combination 

In the likelihood combination method the cepstral coefficients in each subband are 

used in the training phase to estimate a subband cognitive load statistical model. During 

the testing phase, the likelihood score is estimated independently for each individual 

band, as shown in Figure 4.4a. As the subband spectrum has less variation than the full-

band spectrum, we need fewer cepstral coefficients to describe the subband spectrum, 

when compared to the full-band spectrum. The statistical models of subband cepstral 
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coefficients therefore can be modeled more effectively than those of the full-band cepstral 

coefficients.  

From these subband likelihood scores, the overall likelihood score of the multi-band 

system is obtained as follows 
N

i
iiLLLL

1                                                                                               
(4.1) 

where LL is the log likelihood score of the multi-band system, LLi and i are the log 

likelihood score and the weighting coefficient of the ith subband respectively. ]1,0[i  

and satisfies 1
1

N

i
i . N is the number of subbands in the system. In this scheme, large 

weighting coefficients are used to emphasize the recognition results from reliable 

subbands and small weighting coefficients are used to de-emphasize the recognition 

results from less reliable subbands in order to improve the performance of the 

classification system.  

Weighting schemes: 

 Accuracy weighting scheme: this weighting scheme emphasizes the 

classification result of the subband that produces higher performance for the CL 

classification system. The weighting coefficient of the ith subband is determined as 

the normalized classification accuracy of that subband and is expressed as: 

N

i
i

i
i

Accuracy

Accuracy

1

                                                                                       (4.2) 

 
where Accuracyi is the accuracy of system based on the cepstral coefficients of the 

ith subband, computed from clean speech. The effectiveness of the accuracy 

weighting scheme will be investigated in this study for both noisy and clean 

conditions.    

 Signal to noise ratio (SNR) weighting scheme: this weighting scheme 

emphasizes the classification results of subbands that have a higher SNR. The 

weighting coefficient of the ith subband is determined as the normalized signal to 

noise ratio of that subband that is expressed as: 

N

i
i

i
i

SNR

SNR

1

                                                                                                (4.3) 
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where SNRi is the signal to noise ratio of the ith subband. SNRi is computed as the 

ratio of the speech power to the noise power of the ith subband. The noise power 

and speech power are estimated as the sum of noise power density and speech  

power density respectively. The noise power density is estimated as the mean of 

the power densities in non-speech frames and the speech power density is 

estimated by subtracting the estimated noise power density from the noisy speech 

power density. The effectiveness of the signal to noise ratio weighting scheme 

will be investigated in noisy conditions.  

 
Figure 4.4: Multi-band CL classification system based on (a) likelihood combination,                                        

and (b) feature combination [97]. 

 

Non-weighting scheme: In this scheme, the weighting coefficients of all subbands are 

equal (no relative weighting). The accuracy of the system based on a non-weighting 

scheme is used as the reference for comparison with the system based on the accuracy and 

SNR weighting schemes.   

4.3.1.2 Feature combination  

Unlike the likelihood combination method, the feature combination method does not 

assign weighting coefficients to different subbands. Instead, the acoustic features 
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extracted from individual subbands are concatenated into a single vector which is then 

used as the input to the classifier, as illustrated in Figure 4.4b. Under the effect of band-

limited noise, the feature combination method is expected to be more effective than the 

full-band approach as it is able to isolate the effect of noise in a few feature components. 

In the feature combination method, the statistical model can utilize joint cognitive load 

information in adjacent subbands as it models the combined features in all subbands. In 

this sense, the feature combination method is more advanced than the likelihood 

combination method, where the joint information is not exploited by the statistical 

models, as they are modeled independently in different subbands.  

4.3.2 Classification experiment setup for multi-band approach 

The classification system used in this chapter to evaluate the performance of the 

speech features was described in Section 3.3.1. In order to estimate the weighting 

coefficients for the likelihood combination approach, the Stroop test corpus is split into 

three datasets, namely training, testing and development datasets. The weighting 

coefficients are estimated from the development dataset. As the weighting scheme is not 

applied for the feature combination method and full-band approaches, the development 

dataset is not used in the classification experiments based on these approaches. Among 

the fifteen speakers in the Stroop test corpus, data from twelve speakers was used as the 

training dataset, data from two speakers was used as the development dataset and data 

from one speaker was used as the testing dataset. This is illustrated in Figure 4.5. Cross 

fold validation is performed i.e. each experiment was performed fifteen times with 

different speakers used as the testing and development speakers each time. The overall 

accuracy of the system is then obtained as the average of the accuracies for each fold.   

 
Figure 4.5: Allocation of training, testing, and development dataset. 
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The training speech used for the experiments carried out in noisy conditions is clean 

and only the testing speech is noisy. This is in line with practical scenarios as the training 

speech can be recorded in the laboratory which is almost unaffected by noise. Noisy 

speech is obtained by adding noise from the NOISEX-92 database to clean speech at five 

SNR levels: 0, 5, 10, 15 and 20 dB. The NOISEX-92 database was created by the Speech 

Research Group at Carnegie Mellon University [102]. Amongst the fifteen noises present 

in this database, a subset of seven common noises were used in this thesis: babble, pink, 

white, leopard, factory, F16, and buccaneer. These noises were resampled from 19.98 

kHz to 16 kHz for compatibility with the Stroop test corpus speech signals. Each set of 

experiments in this study (for one noise and one SNR) is repeated 35 times (7 noises x 5 

SNRs). Due to the large number of experiments to be carried out, this chapter was carried 

out only on the Stroop test corpus.  

4.3.3 Estimation of weighting coefficients for likelihood combination  

The weighting coefficients for different subbands of the likelihood combination are 

estimated for individual testing speakers independently from the corresponding 

development dataset.  

 Accuracy weighting scheme: the weighting coefficients of this scheme are 

estimated using equation (4.2) where the Accuracyi are computed for individual 

testing speakers where the corresponding development dataset is used in the 

testing phase. Figure 4.6 plots the accuracy weighting coefficients of different 

subbands for different testing speakers. It can be seen from this figure that the 

weighting coefficients of the first subband are larger than those of the second 

subband for most of the testing speakers. This means that the accuracy weighting 

scheme will emphasize the speech features in the low frequency subband and de-

emphasize the speech features in the high frequency subband.   

 
Figure 4.6: Weighting coefficients of accuracy weighting scheme. 
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 Signal to noise ratio (SNR) weighting scheme: the weighting coefficients of this 

scheme are estimated using equation (4.3) computed on the development dataset. 

Figure 4.7 plots the SNR weighting coefficients average across all testing speakers 

and all SNR levels for the two different subbands and the seven different noise 

types. It can be observed from this figure that according to this weighting scheme, 

the weighting coefficients of the first subband are significantly larger than those of 

the second subband for all of the noise types except for the leopard and babble 

noise. This means that under the effect of all noise types except leopard and 

babble noise, the SNR weighting scheme for the likelihood combination system 

will emphasize the speech features in the low frequency subband. For leopard and 

babble noise, the weighting coefficients of the second subband are larger than 

those of the first subband. This is probably due to the fact that these noises are 

mostly distributed in the first subband, as shown in Table 4.1. Therefore under the 

effect of these two noises, the system based on the signal to noise ratio weighting 

scheme will emphasize the speech features in the high frequency subband.  

 

 
Figure 4.7: Average weighting coefficients of SNR weighting scheme.  

 

4.4 Performance of multi-band approach in clean condition 
This section investigates the effectiveness of the multi-band approach based on two 

subbands and compares it with that of the full-band approach under clean conditions by 

comparing the results of cognitive load classification experiments. For the multi-band 

system based on the likelihood combination method, the accuracy weighting and non-

weighting schemes are used to combine classification results of individual subbands. The 

SNR weighting scheme is not used here as the speech used in these experiments is clean. 

The results of these experiments are shown in Table 4.3. 
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Table 4.3: Accuracy of multi-band and full-band approaches in clean condition. 

 
System 

Multi-band (2-band)   
Full-band Likelihood combination Feature 

combination Non-
weighting 

Accuracy 
weighting 

Classification 
accuracy (%) 76.9 78.2 80.0 75.9 

 
 

The results in Table 4.3 indicate that all multi-band systems yield higher 

classification accuracies than the full-band system. It is interesting to see that even the 

likelihood combination approach based on a non-weighting scheme results in better 

performance than the full-band approach. This might be because the statistical models of 

the subband features are more accurate than the full-band model due to the lower 

dimensionality of the subband features.  

When the accuracy weighting scheme was applied, the performance of the likelihood 

combination system was better than that of the non-weighting scheme and hence much 

better than the full-band system. As found in Section 4.2.2.2, the first subband is 

significantly more useful than the second subband for cognitive load classification. 

Moreover, the accuracy weighting scheme assigns more weight to the low frequency 

subband and less weight to the high frequency subband. The higher performance of the 

accuracy weighting scheme compared to the non-weighting scheme therefore indicates 

that we can improve the performance of the multi-band classification system based on the 

likelihood combination by emphasizing speech features in the low frequency region. 

Furthermore, the feature combination approach results in higher performance when 

compared to the full-band approach and the likelihood combination approach. The better 

performance of the feature combination approach compared to the likelihood combination 

approach might be because the statistical model in the feature combination utilizes the 

joint cognitive load information between adjacent subbands more effectively than the 

likelihood combination approach.  

In terms of system performance, the multi-band systems based on likelihood 

combination with accuracy weighting scheme and feature combination method produced 

a 9.5% and 17% relative error rate reduction respectively, when compared to the 

traditional full-band system. 
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4.5 Performance of multi-band approach under noisy conditions 

4.5.1 Reliability of subband speech features  

As discussed in Section 4.2, the performance of the system under noisy conditions 

based on the likelihood combination approach can be improved by assigning weighting 

coefficients to speech features in different subbands according to their reliability. It is 

therefore necessary to evaluate the reliability of speech features in different subbands. 

From the point of view of a classification system, the reliability of a feature is 

proportional to the accuracy of the classification system using that feature. In this section 

subband speech features are used to perform classification experiments in noisy 

conditions and the obtained accuracy is used as a measure of their reliability. In 

particular, the cepstral coefficients computed in different subbands are used to perform 

the classification experiments in noisy conditions where the test speech was contaminated 

by various noise types with SNR varying from 0 dB to 20 dB in steps of 5 dB. The 

average accuracies of the subband speech features across all levels of SNR of individual 

noise are plotted in Figure 4.8.  

 
Figure 4.8: Average accuracies of subband speech features. 

 

It can be observed from Figure 4.8 that the average accuracy of the first subband is 

always significantly larger than that of second subband for all of the noise types tested. 

This indicates that in noisy conditions the speech features in the low frequency band are 

significantly more reliable than those in the high frequency band with regards to cognitive 

load classification. The superiority of the low frequency subband compared to the high 

frequency subband is most probably because it contains the most significant amount of 

cognitive load information as described in Section 4.2.2.2. 
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4.5.2 Weighting schemes for likelihood combination  

This section investigates the effectiveness of the accuracy weighting and SNR 

weighting schemes and compares them with that of the non-weighting scheme for 

cognitive load classification based on the likelihood combination method. It is done by 

carrying out the classification experiments with these weighting schemes under the effect 

of seven different noise types and at five levels of SNR. The accuracies obtained from 

these experiments are used to evaluate the effectiveness of different weighting schemes. 

The average classification accuracy across all SNRs obtained from these experiments for 

individual noise types is shown in Table 4.4.  

The results in Table 4.4 show that both accuracy and SNR weighting schemes 

provided higher accuracy for the multi-band classification system based on likelihood 

combination than the non-weighting scheme. Since both accuracy and SNR weighting 

schemes assign a larger weight to the low frequency subband than the high frequency 

subband, the higher accuracies of these weighting schemes compared to the non-weighing 

scheme indicate that the emphasis of speech features in the low frequency subband can 

improve the performance of the multi-band cognitive load classification system based on 

likelihood combination under noisy conditions.  

 
Table 4.4: The average accuracies of different weighting schemes.  

 Average classification accuracy (%)  

Weighting 

scheme 

Noise type  

Accuracy 
weighting  

SNR 
weighting   

Non-
weighting  

Pink 60.5 62.1 60.0 

White 57.9 59.9 56.9 

Leopard 72.9 67.9 72.3 

Factory 54.5 55.8 53.2 

F16 59.9 60.3 59.6 

Buccaneer 59.9 59.5 60.1 

Babble 56.8 56.4 56.4 

Average 60.3 60.3 59.8 

 

The accuracy and SNR weighting schemes provided equal performances for the 

multi-band classification system based on likelihood combination. Furthermore, the 

performance of these two weighting schemes is higher than that of the non-weighting 
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scheme. The accuracy weighting scheme will be used to develop the multi-band cognitive 

load classification system based on likelihood combination in the next section. 

4.5.3 Comparison of the effectiveness of multi-band and full-band approaches  

Cognitive load classification experiments in noisy conditions were carried out to 

compare the effectiveness of the 2-band multi-band approach for both likelihood 

combination and feature combination methods with that of the full-band approach. The 

accuracies averaged over all SNRs of these experiments for individual noise types are 

shown in Table 4.5.  

The average classification accuracies presented in the last row of Table 4.5 show that 

all the multi-band approaches provided higher accuracies than the full-band approach. 

This suggests that the multi-band approach is more robust to noise than the full-band 

approach for cognitive load classification. The likelihood combination and the feature 

combination systems produced 3.9% and 9.9% relative error rate reduction respectively 

compared to the full-band system. In addition, between the two multi-band approaches, 

feature combination provided a higher accuracy than likelihood combination. This is 

consistent with the results obtained under clean conditions.  

 
Table 4.5: The accuracies of multi-band and full-band approaches in noisy conditions. 

 
 

 Average classification accuracy (%) 
System 

 
 
Noise type 

Multi-band 
 

Full-band Feature 
combination 

Likelihood 
combination 

(accuracy weighting) 
Pink 64.0 60.5 58.0 

White 62.2 57.9 54.3 

Leopard 74.9 72.9 71.0 

Factory 56.9 54.5 55.8 

F16 61.0 59.9 57.8 

Buccaneer 58.8 59.9 53.8 

Babble 61.8 56.8 60.2 

Average 62.8 60.3 58.7 
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4.5.4 Performance of the multi-band system based on three subbands  

In order to consolidate the effectiveness of the weighting schemes and the multi-band 

approach, the classification experiments were performed on a three subband (3-band) 

multi-band system. The accuracies averaged over all SNRs are presented in Table 4.6.  

Table 4.6: The average accuracies of the 3-band multi-band systems.  

 Average accuracy (%) 
System 

 
 
Noise type 

Multi-band  
Full-
band 

Feature 
combination 

Likelihood combination  
Accuracy 
weighting 

SNR 
weighting 

Non-
weighting 

Pink 62.9 62.4 62.4 62.0 58.0 

White 59.7 61.7 60.0 61.8 54.3 

Leopard 75.9 73.3 69.2 73.1 71.0 

Factory 57.0 56.9 57.7 56.9 55.8 

F16 60.2 57.6 56.9 57.8 57.8 

Buccaneer 55.8 59.2 58.8 57.4 53.8 

Babble 65.5 61.9 61.5 60.9 60.2 

Average 62.4 61.9 60.9 61.4 58.7 

  

The accuracies averaged across noise types presented in the last row of Table 4.6 

show that all multi-band systems based on 3-band approach provide higher accuracy than 

the full-band system. This again indicates the effectiveness of the multi-band approach 

for cognitive load classification. Furthermore, the accuracy weighting scheme is more 

effective and the signal to noise ratio weighting scheme is less effective than the non-

weighting scheme.  

The average accuracies across all SNRs obtained from the experiments using the 

subband speech features of the three bands approach are shown in Figure 4.9. It can be 

seen from this figure that the second subband is more reliable than the other subbands for 

classifying cognitive load in noisy conditions. Furthermore, the weights of the accuracy 

weighting and SNR weighting schemes shown in Figure 4.10 indicate that the accuracy 

scheme emphasizes the second subband and the SNR scheme emphasizes the first 

subband. These observations further support the hypothesis that the emphasis of the 

speech features in a more reliable subband can improve the performance of the cognitive 

load classification system in noisy conditions. 
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Figure 4.9: Average accuracies of subband features of 3-band approach.  

 
Figure 4.10: (a) Accuracy weighting coefficients and (b) SNR weighting coefficients averaged across all 

testing speakers and SNR levels of the 3-band approach. 

4.6 Summary   
This chapter found that the low frequency mel subbands are more important for 

cognitive load classification than the high frequency mel subbands. It then investigated 

the effectiveness of different weighting schemes and proposed the use of a multi-band 

system to emphasize speech features in the low frequency band in order to improve the 

performance of the system.  

In clean conditions the proposed accuracy weighting scheme is found to produce 

higher classification accuracy when compared with the non-weighting scheme for the 
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multi-band classification system based on likelihood combination. This indicates that 

assigning more weight to emphasize speech features in the low frequency band can 

improve the performance of the multi-band system. Furthermore, both likelihood 

combination and feature combination multi-band systems produce higher performance 

than the full-band system. In particular the likelihood combination based on accuracy 

weighting scheme and the feature combination systems reduce the relative error rate by 

9.5% and 17% respectively compared to the traditional full-band system.  

Under noisy conditions it was found that the proposed accuracy and SNR weighting 

schemes produce higher accuracy than the non-weighting scheme for the 2-band system. 

As these two weighting schemes emphasize the low frequency subband, we can conclude 

that the low frequency region is more important than the high frequency region for 

cognitive load classification, not only in clean conditions but also in noisy conditions. 

Furthermore, both likelihood combination and feature combination of multi-band system 

were found to provide higher classification performance than the traditional full-band 

system.  

Although the effectiveness of the multiband approach was evaluated only on cepstral 

features, it is reasonable to expect that this approach is also effective for the classification 

system using other spectral features such as spectral centroid frequency and spectral 

centroid amplitude features. This is because when analyzing the distribution of cognitive 

load information contained in these features, it was also found that the low frequency 

subbands are more important than the high frequency subbands for cognitive load 

classification as will be described in Section 5.3.2.  
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5. Chapter 5: Investigation of cognitive load 

information distribution and filterbank 

design 
 

5.1 Introduction  

The study presented in Chapter 4 found that the spectral information specific to 

cognitive load is mainly distributed in the low frequency mel subbands. Therefore, the 

use of weighting schemes has been proposed to emphasize the speech features in the low 

frequency subband in order to improve the performance of the cognitive load 

classification system. Weighting schemes are not the only avenue of utilizing the 

cognitive load information for the classification system development. An alternative is to 

emphasize the spectral information in the low frequency region. In the case of the spectral 

features, namely cepstral coefficients, spectral centroid frequency and spectral centroid 

amplitude, this can be done by increasing the frequency resolution of the front-end 

filterbanks by allocating more filters in the low frequency region.  

Furthermore, the significant difference of the amounts of spectral information 

contained in different mel subbands, as found in Chapter 4, implies that the mel filterbank 

may not be an optimal filterbank and also motivates the study of designing effective 

filterbanks specific for cognitive load classification by choosing the filter bands according 

to the distribution of cognitive load information in order to improve the performance of 

the system.  

The design of an effective filterbank is constrained by the number of filters in the 

filterbank. As the number of filters in a filterbank used in front-end feature extraction 

corresponds to the feature dimension of the spectral features, this chapter initially 

investigates the effect of varying the dimension of the features on the performance of the 

classification system in order to determine the dimensions that produce the highest 

performance. The distribution of cognitive load information along the frequency bands is 

analyzed by quantifying the amount of spectral information contained in every uniformly 

divided subband. The filterbank that can effectively extract the specific spectral features 

for cognitive load classification is then designed by allocating the center frequencies and 

bandwidths of its filters according to the distribution of cognitive load information. The 
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number of filters in the designed filterbank is chosen to produce the optimal spectral 

feature.  

5.2 The effect of varying the feature dimension of the spectral 

features  

5.2.1 Hypothesis 

The spectral centroid frequency (SCF) and spectral centroid amplitude (SCA) 

features capture the shape of the speech spectrum within individual subbands covered by 

the filters of the filterbank used to extract these features. The widths of these subbands 

depend on the number of filters of the filterbank. A small number of filters would result 

in very large subbands and hence the extracted spectral features may not be able to 

capture the details of spectral information properly. On the other hand, a large number of 

filters would result in a narrow bandwidth and therefore the extracted spectral features in 

adjacent subbands may have redundant details due to adjacent band correlation. Another 

drawback for a large number of filters is the increase in the number of modeling 

parameters in the Gaussian mixture model due to the high dimensionality of the feature 

vectors. In this case the training data may not be sufficient to estimate all the parameters 

of the model. The dimension of the spectral centroid features is equal to the number of 

filters used to extract them. This suggests that the spectral centroid features with large or 

small dimensions can degrade the performance of the classification system.  

The MFCC feature captures the approximation of the spectral envelope via the 

filterbank which consists of 20 filters. The dimension of this feature is N (1 ≤ N ≤ 20), 

which is equal to the number of discrete cosine transform (DCT) coefficients where the 

DCT is applied to the log of the spectral energies at the output of the filters.  

5.2.2 System performance with different feature dimensions  

This section investigates the effect of varying the feature dimension of the spectral 

features (MFCC, SCF and SCA) extracted using the mel filterbanks to the performance of 

the cognitive load classification system. The purpose of this investigation is to determine 

the dimensions that produce the best performance. This is done empirically by varying the 

dimension of these features from 2 to 20 in steps of 2. The dimensions of SCF and SCA 

are varied by changing the number of filters used to extract them. The dimension of the 

MFCC is varied by changing the number of DCT coefficients used to represent it. These 

features were used to perform the classification experiment. The dimensionality 
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producing the best performances is determined from the classification accuracies. The 

accuracies of the classification system using the individual MFCC, SCF and SCA features 

in the front-end are showed in Figure 5.1. The accuracies obtained by fusing the 

classification results of the SCF-based and SCA-based systems were also determined and 

showed in this figure.  

 

 
Figure 5.1: Performance of the spectral features with various dimensions evaluated on                                        

(a) Stroop test, and (b) Reading and Comprehension corpora. 
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The results in Figure 5.1 show that all the accuracy curves initially increase and then 

decrease as the feature dimension increases. This is in line with the hypothesis that the 

spectral features with large or small dimensions degrade the performance of the system. 

Interestingly, all the curves reach their peaks at the feature dimension of six. This 

indicates that six dimensional spectral features produce the highest performance.  

5.2.3 Evaluation of the correlation of SCF and SCA 

 

Figure 5.2: Correlation coefficients of adjacent bands of SCF (a) and SCA (b).  

SCF feature 

SCA feature 
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As an attempt to explain the performance degradation of the spectral centroid 

features with large dimensions, the correlation coefficients of the adjacent frequency 

bands of SCF and SCA features were computed separately over the two corpora. The 

correlation coefficient  between the kth band feature and its adjacent band feature was 

calculated as  

     
1
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kk

XXE                                                    (5.1)  

where kX  is the feature vector in the kth band, k  and k  are the mean and variance of 

kX  respectively.  

The variation of the average correlation coefficients of the SCF and SCA against its 

center frequency of the band is given in Figure 5.2 for the Stroop test corpus. Similar 

patterns of variation in the correlation were also observed for the features extracted from 

the Reading and Comprehension corpus. It can be seen from this figure that the 

correlation coefficient of the spectral centroid features increases when the number of 

filters, i.e. the feature dimension, increases. This effect causes redundancy in the feature 

vector which may be one of the reasons for degradation in the performance of the system 

with a large number of filters.  

5.3 The distribution of CL information across different frequency 

bands 

The effectiveness of the spectral features in cognitive load classification not only 

depends on their dimensions but also on the way the extraction filters are arranged across 

the speech bandwidth. An effective filterbank is expected to allocate a large number of 

filters i.e. have a high frequency resolution in the frequency region containing a 

significant amount of cognitive load information. Therefore in order to design effective 

filterbanks, it is necessary to know how cognitive load information is distributed across 

the bandwidth of speech.  

The amount of information presented in each frequency band is proportional to the 

discrimination ability of the speech features in that band. In other words, the speech 

feature computed from a frequency band containing a significant amount of CL 

information is more discriminative for cognitive load than the feature computed from 

another frequency band containing a lesser amount of CL information. In this study the 

speech features are extracted in individual subbands and their cognitive load 
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discrimination ability is quantified and used as a measure of the amount of cognitive load 

information distributed in the corresponding subbands. The discrimination ability of the 

feature is estimated at three different stages of the classification process: namely feature, 

model and classification stages. It is estimated at the feature stage based on the separation 

between the distributions of the feature for different cognitive load levels. It is estimated 

at the model stage by using the average of the pairwise distances between different 

statistical models representing different cognitive load levels. Finally, it is estimated at 

the classification stage based on the accuracy of the system.  

 

 
Figure 5.3: An illustration of the feature extraction of (a) subband cepstral coefficients,                             

and (b) subband SCF, SCA, and energy 

In this section, the amount of cognitive load (CL) information distributed in a 

subband is evaluated through the discrimination ability of the subband cepstral 

coefficients, SCF, SCA and energy. The subband energy is computed as the sum of the 

magnitude spectrum in a subband, using equation (3.9) with the weighting coefficient       
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f = 1. All of these features are extracted from individual subbands, however the extraction 

of the cepstral coefficients is different to that of the spectral centroid and energy features. 

For spectral centroid and energy features, a single feature is extracted from each subband 

using a filter. The widths of the subbands need to be small so that the features can 

sufficiently capture the detailed variation of the speech spectrum. A number of cepstral 

coefficients are extracted from each subband using a series of filters covering that 

subband. As such, cepstral coefficients can capture the detailed variation of the speech 

spectrum within a larger subband. The analysis of the CL information distribution using 

the cepstral coefficients was performed on 400 Hz subbands and that using the SCF, SCA 

and energy was performed on 250 Hz subbands. Figure 5.3 shows an illustration of the 

extraction of cepstral coefficients, SCF, SCA, and energy in individual subbands.  

5.3.1 Analysis on cepstral coefficients 

In order to extract the subband cepstral coefficients, the 8 kHz speech spectrum was 

first split into twenty uniform subbands of width 400 Hz. The spectrum in each subband 

was then passed through a series of eight triangular filters, equally spaced in the linear 

frequency scale for that subband (Figure 5.3a). The triangular filter was chosen as it is 

commonly  used to extract cepstral coefficients for speech recognition [99]. Finally, the 

discrete cosine transform (DCT) was applied to the log of the power spectrum at the 

outputs of the filters and the first five DCT coefficients were obtained as the cepstral 

coefficients for the corresponding subband.  

5.3.1.1 Feature-based measure 

A feature is considered to be highly discriminative of CL if there is a large separation 

between the distributions of this feature for different cognitive load levels. In the view of 

pattern recognition, the speech feature for each cognitive load level is considered as a 

class and the separation of different classes can be measured using the Fisher ratio, which 

is defined as the ratio between the variance between classes to the mean of the variances 

within individual classes [103]. The Fisher ratio for a single dimension feature vector x is 

mathematically expressed as [103]  
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where M is the number of classes; N is the number of speech frames; j
ix  is a single 

dimensional feature of the jth speech frame of cognitive load level i where                  

i = 1, 2, 3, …, M and j = 1, 2, 3, …, N; ui and u are the average subband features of load 

level i and all load levels respectively, which are defined as   
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According to the Fisher criterion, a feature with larger values of Fisher ratio will be 

more discriminative. The Fisher ratio computed for the cepstral coefficients in different 

subbands is graphed against the center frequency of a particular subband in Figure 5.4. 

  

 
Figure 5.4: Fisher ratio of subband cepstral coefficients.  

 

It can be observed from Figure 5.4 that both Fisher ratio curves of the two corpora 

initially increase at low frequencies and then gradually decrease as the last frequency 

band is approached. This suggests that the cognitive load information is concentrated in a 

specific frequency region. For the convenience of comparing with the results of other 

methods, the frequency region over which CL information is mainly distributed and the 

frequency band where the Fisher ratio curves reach their maxima (peak frequency band), 

are roughly estimated and presented in Table 5.1.   
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Table 5.1: Concentrated frequency region and peak frequency band of CL                                                 

according to Fisher ratio curves of cepstral coefficients. 

Stroop test Reading and Comprehension 

CL information 
concentrated 

frequency region (Hz) 

Peak 
frequency 
band (Hz) 

CL information 
concentrated 

frequency region (Hz) 

Peak 
frequency 
band (Hz) 

(0-1600) (400-800) (0-1600) (400-800) 
 

5.3.1.2 Model-based measure 

At the model stage, each cognitive load level is represented by the probability 

distribution model of the acoustic feature of that level. The probability distribution model 

used in this work to represent each load level is a Gaussian mixture model. The CL 

discrimination ability of a speech feature can be quantitatively evaluated through the 

dissimilarity between different GMMs. The features producing larger dissimilarity 

between different models are more discriminative. The Kullback-Leibler (KL) distance is 

used in this work to measure the dissimilarity of GMMs modeling the distributions of 

cepstral coefficients at two different cognitive load levels in an individual subband [104]. 

The KL distance is commonly used to measure the distance between two probabilistic 

models in an information-theoretic sense [105]. The KL distance between two GMMs can 

be approximated by [104] 
  

N

i
iii gfKLgfKL

1
||||   (5.4) 

where f and g are the two GMMs considered, N is the number of mixtures in each model, 

αi is the weight of the ith mixture, fi and gi are the ith mixture of f and g. ii gfKL || is the 

distance between the ith mixtures of f and g, which is expressed as [106] 
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where  is the covariance matrix,  is the mean vector of the Gaussian model and  is the 

identity matrix.  

The pairwise Kullback-Leibler (KL) distance in equation (5.4) is computed for every 

two GMMs and then the final Kullback-Leibler distance is obtained by averaging all 

pairwise distances. This final Kullback-Leibler distance will be referred to as KL distance 

for the remainder of this thesis for simplicity. The KL distance of the subband cepstral 

coefficients is graphed against the center frequency of the subbands as in Figure 5.5.  
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Figure 5.5 shows that the KL distance curve of the Reading and Comprehension 

corpus monotonically decreases from the first band to the last band and the curve of the 

Stroop test corpus initially increases slightly to the second band and then decreases to the 

last frequency band. These observations indicate that cognitive load information is mainly 

distributed in the low frequency region and the amount of the information contained in 

individual subbands decreases with respect to frequency. The frequency regions in which 

cognitive load information is concentrated with respect to the KL distance curves and the 

frequency bands where the KL distance curves reach their maxima are roughly 

determined and presented in Table 5.2. It can be seen that these frequency regions are 

relatively consistent with those obtained from the analysis of the Fisher ratio, presented in 

Table 5.1.  

 
Figure 5.5: KL distance of subband cepstral coefficients. 

 
Table 5.2: Concentrated frequency region and peak frequency band of CL                                                 

according to the KL distance curves of cepstral coefficients. 

Stroop test Reading and Comprehension 

CL information 
concentrated 

frequency region (Hz) 

Peak 
frequency 
band (Hz) 

CL information 
concentrated 

frequency region (Hz) 

Peak 
frequency 
band (Hz) 

(0-1600) (400-800) (0-1600) (0-400) 
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5.3.1.3 Performance based measure 

At the classification stage, the discriminative ability of a speech feature can be 

evaluated using the accuracy of the classification system based on that feature. That is, 

speech features producing higher classification accuracy are more discriminative. In this 

section a series of cognitive load classification experiments were conducted by using the 

cepstral coefficients in individual subbands as features. The obtained accuracies are used 

to evaluate the cognitive load discriminative ability of the speech features in the 

corresponding subbands. The accuracies obtained from these experiments are shown in 

Figure 5.6.  

 
Figure 5.6: Classification accuracies of subband cepstral coefficients. 

 

It can be seen from Figure 5.6 that the accuracy curves have high values in the 

frequency region below 2 kHz. Both curves reach their maxima at the second subband 

ranging from 400 Hz to 800 Hz which is called the peak frequency band. These 

observations indicate that the cognitive load information is mainly distributed in the low 

frequency region and that the 400 Hz to 800 Hz frequency band contains the largest 

amount of the information as presented in Table 5.3. These observations are consistent 

with those of previous analysis using the Fisher ratio and the KL distance. Beyond the 

peak frequency band, the accuracy curve of the Stroop test corpus tends to decrease to the 
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last frequency band. This suggests that the amount of cognitive load information 

contained in individual subbands decreases with respect to frequency. The accuracy curve 

of the Reading and Comprehension corpus decreases to approximately 2 kHz and then 

varies randomly close to 33.3% which happens to be the probability of determining the 

correct CL level by chance. This can be attributed to the fact that when the cepstral 

coefficients of these subbands were used to train the models, the three Gaussian models 

obtained were not well separated to represent the three different load levels. This claim is 

supported by the very small KL distances of the Reading and Comprehension corpus 

beyond 2 kHz as shown in Figure 5.5.  

 
Table 5.3: Concentrated frequency region and peak frequency band                                                       

according to the accuracy curves of cepstral coefficients. 

Stroop test Reading and Comprehension 

CL information 
concentrated 

frequency region (Hz) 

Peak 
frequency 
band (Hz) 

CL information 
concentrated 

frequency region (Hz) 

Peak 
frequency 
band (Hz) 

(400-2000) (400-800) (0-1600) (400-800) 
 

5.3.2 Results from the analysis on SCF, SCA, and energy  

In this section, analysis of cognitive load information distribution is performed on the 

other three spectral features: spectral centroid frequency (SCF), spectral centroid 

amplitude (SCA) and energy, to consolidate the results of cepstrum coefficient analysis. 

In order to extract the subband SCF, SCA, and energy, the speech spectrum was 

decomposed into thirty two subbands of width 250 Hz using thirty two uniformly spaced 

Gabor bandpass filters (Figure 5.3b). The Gabor filter is commonly used to extract 

spectral features [94]. The thirty two subbands are chosen herein in order to have high 

resolution in the spectral domain. The spectral centroid and energy features are computed 

in individual subbands and their discrimination abilities for cognitive load are 

quantitatively analyzed at the feature, model, and classification stages.  

The results from the analysis of these features using the Fisher ratio, KL distance, 

and classification accuracy measures are shown in Figures 5.7, 5.8, and 5.9 respectively. 

These figures again indicate that the cognitive load information distribution initially 

increases to a peak and then decreases in the high frequency bands. These observations 

are consistent with the results obtained from the analysis on the cepstral coefficients. 

Furthermore, the information distribution curves of the SCA and energy are very similar. 
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This can be due to the fact that both of these features relate to the magnitude spectrum in 

each subband. The frequency region in which cognitive load information is mainly 

distributed and the peak frequency band obtained from the analysis on the spectral 

centroid frequency and spectral centroid amplitude features are presented in Table 5.4.      

 

Figure 5.7: Fisher ratio of subband SCF, SCA, and energy features computed across                                    

(a) Stroop test corpus, and (b) Reading and Comprehension corpus. 

  

Figure 5.8: KL distance of subband SCF, SCA, and energy computed across                                                

(a) Stroop test corpus, and (b) Reading and Comprehension corpus. 

Stroop test 

Reading and Comprehension 

Stroop test 

Reading and Comprehension 
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Figure 5.9: Classification accuracies of subband SCF, SCA, and energy evaluated on                                  

(a) Stroop test corpus, and (b) Reading and Comprehension corpus. 

 

5.3.3 Spectral distribution of CL information  

The frequency regions in which cognitive load information is mainly distributed and 

the peak frequency band containing the largest amount of CL information obtained by 

using different analysis methods and different spectral features are tabulated in Table 5.4 

for a comprehensive analysis. The results obtained by analyzing the energy feature are not 

reported herein as they are same as those obtained by analyzing the SCA features.  

It can be observed from Table 5.4 that the results obtained by using three different 

analysis methods are highly consistent. The overall results for concentrated frequency 

region and peak band for each feature are determined by at least two of the three analysis 

methods. The overall peak frequency band for the SCA feature performed on the Reading 

and Comprehension corpus is left blank as the results obtained by the three different 

methods are not very consistent. 

According to the results in Table 5.4, the region from 0 Hz to 1.5 kHz is the 

frequency region in which CL information is mainly concentrated for speech sampled at 

16 kHz as it is the intersection of the overall concentrated regions of all three features for 

both corpora. This is illustrated in Figure 5.10a. The exception is the SCA feature of the 

Stroop test corpus which indicated (250-1500) Hz. Furthermore, the peak frequency 

Stroop test 

Reading and Comprehension 
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bands of the cepstral coefficients, SCA, and SCF are (400-800) Hz, (750-1000) Hz, and 

(500-750) Hz respectively. The union of these three regions is (400-1000) Hz in which all 

the CL information distribution curves reach their maximum, as shown in  Figure 5.10b. 

This indicates that the band from around 400 Hz to 1 kHz contains the largest amount of 

CL information for speech sampled at 16 kHz.  

 
Table 5.4: Concentrated frequency region and peak frequency band of CL information                                     

using cepstral coefficients, SCA and SCF features. 

Feature Analysis 
method 

Stroop test Reading and Comprehension 
CL information 

concentrated 
frequency 

region (Hz) 

Peak 
frequency 
band (Hz) 

CL information 
concentrated 

frequency 
region (Hz) 

Peak 
frequency 
band (Hz) 

 

Cepstral 

coefficients 

 

Fisher Ratio (0-1600) (400-800) (0-1600) (400-800) 

KL distance (0-1600) (400-800) (0-1600) (0-400) 

Classification 

accuracy 
(400-2000) (400-800) (0-1600) (400-800) 

Overall  (0-1600) (400-800) (0-1600) (400-800) 

 

 

SCA 

Fisher Ratio (250-1750) (750-1000) (0-1500) (1250-1500) 

KL distance (250-1500) (750-1000) (0-1500) (750-1000) 

Classification 

accuracy  
(500-1500) (750-1000) (500-1500) (500-750) 

Overall  (250-1500) (750-1000) (0-1500) --- 

 

 

SCF 

Fisher Ratio (0-1500) (500-750) (0-1500) (500-750) 

KL distance (0-1500) (500-750) (0-1500) (500-750) 

Classification 

accuracy 
(0-2000) (500-750) (0-1500) (500-750) 

Overall (0-1500) (500-750) (0-1500) (500-750) 

Intersection/union 
frequency region (Hz) (0-1500) (400-1000) (0-1500) (400-1000) 
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Figure 5.10: Determining the concentrated frequency region and peak frequency band for all features 

It is interesting to see in Table 5.4 that the observations of the frequency region in 

which CL information is concentrated and the peak frequency band are highly consistent 

between both corpora, although the speech in these two corpora was collected in very 

different methods. This indicates that the frequency region in which CL information is 

mainly concentrated and the peak frequency band found in this study are data 

independent.  

5.4 Filterbank design for CL classification  

The analysis in Section 5.3 shows that CL information is mainly concentrated in the 

frequency region between 0 Hz and 1.5 kHz. It is hypothesized that if the front-end 

filterbanks used to capture the spectral features have a high frequency resolution, i.e. 

contain a large number of filters, in this region, the CL information in this region can be 

emphasized. This in turn can improve the performance of the classification system based 

on the spectral features. This section designs the filterbanks to extract the spectral features 

specifically for cognitive load classification by systematically allocating the center 

frequencies and bandwidths of their filters in such a way that a larger number of filters are 

allocated in (0-1.5) kHz according to the spectral information of cognitive load contained 

in it. An example of a triangular filterbank with the center frequency and bandwidth of its 

second filter i.e. fc2 and BW2 are illustrated in Figure 5.11.  

Among the three measures used to quantify the distribution of CL information, i.e. 

KL distance, Fisher ratio and classification accuracy, the KL distance measure is expected 

to describe the distribution of spectral information more accurately than the other two 

measures. This is because this measure estimates the distance between GMMs which is 

based on the modeling of the distribution of the speech features. The Fisher ratio, on the 

other hand, is computed solely from the means and the variances of the feature 
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distributions while ignoring the shape of the feature distributions, which is an important 

factor in classification. Since KL distance considers the mean, variance and shape of a 

speech feature distribution, it would be more reliable than the Fisher ratio in measuring 

the distance between classes. Furthermore, the disadvantage of using  the classification 

accuracy score to represent the distribution of cognitive load information is that it varies 

randomly if the models of different CL levels are not sufficiently separate, as shown in 

Figures 5.6 and 5.9b and discussed in Section 5.3.1.3. For these reasons, the distribution 

of cognitive load information based on Kullback-Leibler distance is used as the basis to 

allocate the center frequencies and bandwidths of the filters in this study.  

 

Figure 5.11: An example of a triangular filterbank with 2nd filter’s                                                        

center frequency fc2 and bandwidth BW2. 

 

The effectiveness of the filterbank designed in this study is evaluated by comparing 

with the mel, Bark, equivalent rectangular bandwidth (ERB) and Hertz filterbanks. The 

mel, Bark, and ERB are perceptually motivated filterbanks whose frequency resolution is 

high in the low frequency region and low in the high frequency region. For the Hertz 

filterbank, the filters are uniformly allocated along the bandwidth of the speech signal. 

In this study, filterbanks are designed independently on two different corpora based 

on the CL information distribution estimated for each corpus. All the filterbanks are 

designed in such a way to produce spectral features with six dimensions because Section 

5.2 found that six dimensions produce highest accuracy for the classification system.  

5.4.1 Procedure to allocate center frequencies and bandwidths of the filters  

The procedure to allocate the center frequencies and the bandwidths of the filters of 

filterbanks in individual frequency regions according to the amount of CL information 

distributed in the corresponding frequency regions is presented below: 
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1. The original Kullback-Leibler (KL) curve is generated by connecting all the 

elements of the KL distance, 

                                               (5.6) 

 where  and  are the center frequency and KL distance of the ith subband 

respectively, and N is the number of subbands. 

2. The curve is normalized such that the area below it is one unit. This is done 

because the actual value of Kullback-Leibler distance is not as important as the 

variation of it for this design. 

3. The normalized curve is divided into N subbands whose areas under the curve are 

equal. This division creates narrower subbands in the frequency region with a 

larger Kullback-Leibler distance.   

4. The center frequencies and the bandwidths of the filters are allocated as the 

centers and the widths of the subbands mentioned in step 3. This will ensure the 

bandwidth of a filter in the frequency region with a larger KL distance is smaller 

than that in the frequency region with smaller KL distance. As such, more filters 

are allocated in the frequency region containing more CL information.  

In order to illustrate the procedure described above, an example of allocating the 

center frequencies and bandwidths of the filters of a filterbank based on this procedure is 

shown in Figure 5.12. The number of filters in this example is ten, chosen for 

visualization convenience. The Kullback-Leibler (KL) distance curve in this example was 

computed from the subband cepstral coefficients of the Reading and Comprehension 

corpus, as shown in Figure 5.5. It can be seen from Figure 5.12 that the bandwidth of the 

filter (the width of the subband) increases with respect to the frequency, i.e. the number of 

filters of the designed filterbank in the low frequency region is larger than that in the high 

frequency region. Therefore it is expected that this filterbank can emphasize the CL 

information in the low frequency region. However, it can also be seen from Figure 5.12 

that the bandwidths of the filters in the low frequency region are only slightly smaller 

than those in the high frequency region. As a result, the number of filters in the low 

frequency region is only slightly more than that in the high frequency region. This 

filterbank may hence not be very effective for the classification as it may not sufficiently 

emphasize the cognitive load information in the low frequency band. The reason that the 

bandwidths of the filters in the low frequency region are not very small is because the 

gradient of the KL distance curve is small as seen in Figure 5.12.  
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Figure 5.12: Allocation of center frequencies and bandwidths of a filterbank consisting of ten filters with a 

KL distance curve. The center frequency of each filter is marked by ‘x’ and the bandwidth is indicated by 

the adjacent vertical lines. 

 
Figure 5.13: Allocation of center frequencies and bandwidths of the filterbank consisting of ten filters with 

a modified KL distance curve with = 3. The center frequency of each filter is marked by ‘x’ and the 

bandwidth is indicated by the adjacent vertical lines. 

 

In order to further decrease the bandwidth of the filters in the low frequency region to 

allocate a larger number of filters in this region, an approach to modify the Kullback-

Leibler distance curve in such a way that its gradient is increased was proposed. The 

modified curve is obtained by connecting all the modified KL distance ( ), which is 

expressed as  

                                   (5.7) 
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with  to increase the gradient of the modified curve. This modified distance curve is 

used to allocate the center frequencies and bandwidths of the filters, as described in steps 

2 4 of the above-mentioned procedure. An illustration of allocated center frequencies and 

bandwidths for ten filters of a filterbank based on the modified Kullback-Leibler distance 

curve with = 3 is shown in Figure 5.13. It can be observed from Figures 5.12 and 5.13 

that by increasing , the gradient of the Kullback-Leibler distance curve increases. This 

reduces the bandwidth of the filters in the low frequency region and increases the 

bandwidth of the filters in the high frequency region. Therefore, a larger number of filters 

are allocated in the low frequency region and a smaller number of filters are allocated in 

the high frequency region. This can lead to the filterbank having more emphasis on the 

speech features in the low frequency region. However, a very large value of  would 

result in a very small number of filters in the high frequency region and can cause the 

filterbank to not capture the cognitive load information in this region sufficiently. As a 

consequence, this can degrade the performance of the classification system. These 

explanations suggest that there should be a range of good values of for the design that 

provides a compromise between capturing the information in both low and high 

frequency regions. The filterbanks designed with those values of  are expected to 

produce high performance for the system.  

The value of  used in this study was empirically chosen by carrying out two sets of 

classification experiments. The first set of experiments was carried out with the value of 

 varied from 1 to 10 with a step size of 1. Preliminary experiments had found that  

beyond this range degrades the system performance. This set of experiments was used to 

determine the range of  producing high classification accuracy. The second set of 

experiments was carried out to fine tune the value of  found in the first set of 

experiments by varying that  with a step size of 0.1. The  value producing the highest 

classification accuracy in the second set of experiments will be chosen for allocating the 

center frequencies and bandwidths of the filters of the designed filterbanks.  

5.4.2 Designing filterbank to extract cepstral coefficients   

In this section, a filterbank consisting of twenty triangular filters used to extract 

cepstral coefficients for each corpus. The filterbank was designed using the procedure 

described in Section 5.4.1 where the KLi in equation (5.7) is the KL distance computed on 

the cepstral coefficients of the ith subband.    
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5.4.2.1 Filterbank design 

The classification accuracies obtained from the coarse tune experiment to find  are 

shown in Figure 5.14. It can be observed from this figure that both very small and very 

large values of  degrade the performance of the CL classification system, as explained in 

Section 5.4.1. Furthermore, the approximate region of producing high system 

performance on the Stroop test and Reading and Comprehension corpora are 3 <  < 5  

and 6 <  < 8 respectively.  

 
Figure 5.14: Classification accuracy of cepstral coefficients extracted using the designed filterbanks        

with various values of α.  

 

In the second set of experiments for the Stroop test and Reading and Comprehension 

corpora, the value of  was varied with a step of 0.1 between 3 and 5 and between 6 and 8 

respectively. It was found from these experiments that the value of  producing the 

highest classification accuracy when performed on the Stroop test corpus was  = 4 and 

for the Reading and Comprehension corpus was  = 7.6. These values of  were used to 

designed the filterbank for extracting the cepstral coefficients for CL classification. The 

center frequencies and bandwidths of the designed filterbanks, mel, Bark, ERB and Hertz 

filterbanks are shown in Figure 5.15.  
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Figure 5.15: (a) Center frequencies and bandwidths of different filterbanks used to extract cepstral 

coefficients and (b) The magnified view in the region (0-1.5) kHz. 

 
The number of filters allocated in the region from 0 Hz to 1.5 kHz of different filterbanks 

is shown in Table 5.5 for ease of frequency resolution comparison in this region. It can be 

seen from this table that the designed filterbanks have a larger number of filters in the 
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frequency region (0-1.5) kHz in which cognitive load information is concentrated, as 

found in Section 5.3, than the other filterbanks. The designed filterbank therefore can 

capture CL information more effectively than the other filterbanks.   

 
 Table 5.5: The number of filters in the region (0-1.5) kHz of various filterbanks.  

 

5.4.2.2 Performance of the designed filterbanks   

In order to evaluate the effectiveness of the designed filterbanks for cognitive load 

(CL) classification and for comparison with the mel, Bark, ERB and Hertz filterbanks, 

cepstral coefficients are extracted using these filterbanks for CL classification. The 

classification accuracies obtained from these experiments are shown in Table 5.6.  

Table 5.6: Accuracies of cepstral coefficients based on different filterbanks.  

 

As shown in Table 5.6, the designed filterbanks consistently produce the highest 

performance for the system compared to all other filterbanks used. This supports the 

hypothesis that cognitive load information can be captured more effectively and the 

performance of the system can be improved by allocating a larger number of filters of the 

filterbank in the frequency region from 0 Hz to 1.5 kHz in which CL information is 

mainly concentrated. It is also clear that the perceptual filterbanks are not the optimal 

filterbanks for the classification. Furthermore, among the three perceptual filterbanks mel, 

Bark and ERB, the ERB filterbank produced the highest accuracy and the mel filterbank 

produced the lowest accuracy for the classification system. This may be because among 

these three filterbanks the ERB filterbank has the largest number of filters and the mel 

filterbank has the smallest number of filters in the frequency region (0-1.5) kHz. These 

observations further support the hypothesis that increasing the frequency resolution of the 

filterbank in the low frequency region can improve the performance of the classification 

system.  

Filterbank 
Designed for 
Reading and 

Comprehension 

Designed for 
Stroop test Mel Bark ERB Hertz 

Number of filters 15 13 9 11 12 3 

Filterbank  Designed Mel Bark ERB Hertz 
 

Accuracy 
(%) 

Stroop test 84.8 78.9 79.8 83.9 75.6 
Reading and 

Comprehension 71.1 64.5 65.2 68.1 48.9 
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Compared to the mel, Bark and ERB filterbanks evaluated on the Stroop test corpus, 

the designed filterbank provides a relative error rate reduction of 28.0%, 24.8% and 5.6%. 

The corresponding relative error rate reductions for the Reading and Comprehension 

corpus are 18.6%, 17% and 9.4% respectively.  

The Hertz filterbank consistently produces the lowest performance compared to all 

filterbanks used. This is most probably due to the fact that this filterbank has the lowest 

number of filters in the frequency region from 0 Hz to 1.5 kHz, as seen in Figure 5.15 and 

Table 5.5.  

5.4.3 Designing a filterbank to extract spectral centroid features 

In this section, a filterbank consisting of six Gabor filters used to extract the spectral 

centroid features (SCF and SCA) for each cognitive load corpus is designed by allocating 

the center frequencies and bandwidths. Six filters were chosen because this produces 

spectral centroid features with six dimensions, shown to be the dimension providing the 

highest performance for the system according to the investigation in Section 5.2. The 

procedure to allocate the center frequencies and bandwidths of the filters of the 

filterbanks was described in Section 5.4.1. The KLi in equation (5.7) is obtained by 

normalizing the Kullback-Leibler distance curves of the spectral centroid frequency and 

spectral centroid amplitude features to have the unit area under these curves and then 

averaging them. As the fusion of the SCF-based and SCA-based systems always 

outperforms the individual systems, the objective of designing the filterbanks in this 

section is to produce the best results under the fusion of the SCF-based and SCA-based 

systems.  

5.4.3.1 Filterbank design 

The classification accuracies obtained from the first set of experiments to coarse tune 

, i.e.  varied from 1 to 10 with a step size of 1, are shown in Figure 5.16. It can be seen 

from this figure that the performance of the system does not vary much with respect to . 

Furthermore, the fused system consistently provides higher accuracies than those systems 

based on individual SCF and SCA features. The range of  that produces the highest 

performance for the fusion system on the Stroop test corpus is 2 <  < 6 and for the 

Reading and Comprehension corpus is 7 <  < 9.  

In the second set of experiments to fine tune , the value of  was varied from 2 to 6 

and from 7 to 9, with a step of 0.1 accordingly. It was found from these experiments that 

the value of  producing the highest performance for the system performed on the Stroop 
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test corpus was  = 2.6 and the Reading and Comprehension corpus was  = 7.1. These 

values of  were used to allocate the center frequencies and bandwidths of the designed 

filterbanks.  

 
Figure 5.16: Classification accuracies of SCF and SCA extracted using the designed filterbanks               

with various value of .  
 

The center frequencies and bandwidths of the designed filterbanks, mel, Bark, ERB 

and Hertz filterbanks are shown in Figure 5.17. It can be observed from this figure that 

the designed filterbank for the Reading and Comprehension corpus allocates a larger 

number of filters in the region from 0 Hz to 1.5 kHz than other filterbanks. Furthermore, 

unlike the perceptual filterbanks that have the largest frequency resolution in the lowest 

frequency region, the designed filterbanks have the largest resolution in the region 

approximately (400-1000) Hz, containing the most significant amount of cognitive load 

information, as found in Section 5.3.3. The designed filterbanks therefore can capture the 

cognitive load information contained in the spectral centroid features more effectively 

than the mel, Bark, ERB and Hertz filterbanks.  



112 
 

 
Figure 5.17: (a) Center frequencies and bandwidths of different filterbanks used to capture                            

the SCF and SCA features, (b) The magnified view in the region (0-1.5) kHz. 
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5.4.3.2 Performance of the designed filterbanks   

In order to evaluate the effectiveness of the designed filterbanks and compare it with 

the mel, Bark, ERB and Hertz filterbanks, the spectral centroid features extracted using 

these filterbanks were used to perform the classification experiments. The classification 

accuracies of these experiments are shown in Table 5.7.  

 
Table 5.7: Classification accuracies of SCF and SCA extracted using different filterbanks.  

 Filterbank Designed  Mel Bark ERB Hertz 

 
 
Accuracy 

(%) 

 
Stroop test 

SCF 78.2 82.0 84.3 82.8 71.3 
SCA 84.3 83.7 83.9 84.3 75.9 
Fusion SCF&SCA 87.8 87.2 84.6 86.5 77.6 

Reading and 
Comprehension 

SCF 62.2 63.0 68.9 65.2 44.4 
SCA 72.6 61.5 64.4 63.7 47.4 
Fusion SCF&SCA 74.8 71.9 70.4 69.6 48.9 

 

It is observed from Table 5.7 that among all the filterbanks used, the designed 

filterbanks provide the highest accuracies for the SCA-based system and the fusion of 

SCF-based and SCA-based system. However, the system based on the SCF feature 

extracted using the designed filterbanks did not outperform those using mel, Bark and 

ERB filterbanks.  

Compared to the mel, Bark and ERB filterbanks, evaluated on the Stroop test corpus, 

the designed filterbank provides a relative error rate reduction of 4.7%, 20.8% and 9.6% 

respectively for the fusion of SCF-based and SCA-based systems. The corresponding 

relative error rate reductions for the Reading and Comprehension corpus are 10.3%, 

14.9% and 17.1% respectively. 

The effectiveness of the designed filterbanks for the fusion of SCF and SCA can be 

explained by the fact that they provide the highest frequency resolution at approximately 

(400-1000) Hz. As a result, they can capture cognitive load information more effectively 

than the other filterbanks. Furthermore, the designed filterbanks consistently provide the 

highest performance for an SCA-based system. However, they did not provide better 

performance than the mel, Bark and ERB filterbanks for an SCF-based system. This 

might be because the SCF is a frequency-based feature which captures the approximate 

location of the local maxima of the magnitude spectrum in subbands, unlike the cepstral 

coefficients and SCA features which are amplitude-based. That is the high frequency 

resolution in the frequency region from 400 Hz to 1 kHz of the designed filterbanks result 

in narrow bandwidth of their filters in this frequency region. This narrow bandwidth may 
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not be adequate to extract the SCF effectively within that frequency region. This can 

explain the lower performance of the SCF features computed using the designed 

filterbanks. This conclusion is partly supported by the study reported in [107], indicating 

that the frequency modulation features, which are also the frequency-based features, that 

are extracted from a very narrow bandwidth filter are not effective for speaker 

recognition.  

Similar to the investigation on the cepstral coefficients presented in Section 5.4.2, the 

Hertz filterbank consistently provided the lowest performance. This is most probably 

because this filterbank has the least number of filters in the frequency region from 0 Hz to 

1.5 kHz and therefore does not capture the CL information effectively.  

The higher frequency resolution in the low frequency region and the outperformance 

of the designed filterbanks in this section and in Section 5.4.2 compared to the other 

existing filterbanks suggest that by emphasizing the speech features in the low frequency 

region, which contain significant amount of cognitive load information, the performance 

of the cognitive load classification system can be improved.  

The performance of the classification system was improved in Chapter 4 by assigning 

a larger weight to the lower frequency subbands for emphasizing the speech features 

extracted from these subbands. In this chapter, the system performance is improved by 

increasing the number of filters in the lower frequency subbands. Both of them re-iterate 

the fact that the CL information is concentrated in lower subbands.   

5.4.4 Performance of designed filterbanks in noisy conditions  

In this section, the effectiveness of the designed filterbanks for cognitive load 

classification in noisy conditions is investigated. Noisy speech is generated by adding 

noise from the NOISEX-92 dataset to clean speech at five levels of signal to noise ratio 

(SNR): 0, 5, 10, 15 and 20 dB. A subset of seven noises from NOISEX-92 is used in this 

study: babble, pink, white, leopard, factory, F16 and buccaneer. Due to time constraints, 

all the experiments in this study were carried out on the Stroop test corpus only. The 

classification system used in this study is same as the full-band system described in 

Section 4.3.2.  

Table 5.8 shows the average accuracy computed across all signal to noise ratios for 

different noise types of the classification system using cepstral coefficients extracted 

using the designed filterbank (Section 5.4.2.1) and the other filterbanks. It can be seen 

from this table that among all the filterbanks used, the designed filterbank provides the 

highest performance for the system under the effect of four of the seven noise types tested 
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namely pink, leopard, factory and buccaneer. Furthermore for white and F16 noise, the 

proposed filterbank is the second best filterbank for the classification. Computed for all 

noisy conditions, i.e. seven noise types and five SNRs, the cepstral coefficients extracted 

using the designed filterbank provide the highest performance, compared to all the 

filterbanks tested. As the designed filterbank emphasizes the speech features in the low 

frequency region compared to the other filterbanks, these observations indicate that even 

in noisy conditions, the speech features in the low frequency region are very important for 

cognitive load classification. 

 
Table 5.8: Average accuracy of cepstral coefficients in noisy conditions                                                  

(maximums for individual noise types in bold). 

 Accuracy (%) 

Noise types 

Filterbanks             
Pink White Leopard Factory F16 Buccaneer Babble Average 

Designed 65.2 61.0 82.3 59.8 61.9 61.2 64.9 65.2 

Mel 64.0 58.4 78.0 58.7 64.7 60.0 66.3 64.3 

Bark 63.8 62.6 80.1 58.7 61.7 61.1 67.3 65.0 

ERB 63.5 57.6 81.3 59.5 60.4 58.0 65.0 63.6 

Hertz 53.6 49.5 70.7 49.0 57.3 50.3 55.5 55.1 

 

 
Table 5.9: Average accuracy of the fusion of SCF-based and SCA-based systems in noisy conditions 

(maximums for individual noise types in bold). 

 Accuracy (%) 

Noise  
Filterbanks  

Pink White Leopard Factory F16 Buccaneer Babble Average 

Designed 63.3 56.3 85.9 63.2 65.6 59.4 73.6 66.8 

Mel 64.1 58.5 83.7 62.6 63.2 59.4 71.0 66.1 

Bark 67.2 60.4 82.6 64.6 67.1 63.7 71.7 68.1 

ERB 67.2 61.9 84.6 65.4 66.4 64.0 71.3 68.7 

Hertz 56.7 49.9 76.5 55.1 57.8 54.9 60.8 58.8 

 

The average accuracy across all SNRs of the fusion of SCF-based and SCA-based 

systems, where the SCF and SCA features are extracted using the filterbank designed for 

the Stroop test corpus (Section 5.4.3.1) and the other filterbanks is shown in Table 5.9. It 

can be seen from this table that among all the filterbanks tested, the designed filterbank 

yields highest performance under the effect of the leopard and babble noise. However, it 
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produces lower performance for other noise types. Averaged over all noisy conditions, the 

designed filterbank produces a higher performance than the mel and Hertz filterbanks but 

has a lower performance than the Bark and ERB filterbanks.  

 

5.5 Summary 

This chapter has investigated the effect of varying the feature dimensions of the 

spectral features (SCF, SCA, and MFCC) on the performance of the cognitive load 

classification system. It was found that spectral features with six dimensions produce the 

highest performance. Furthermore, a very small or a very large feature dimension was 

found to degrade the performance of the system, which is partly explained through an 

analysis of correlation of adjacent subbands of the spectral centroid features.  

The analysis of cognitive load information distribution using cepstral coefficients, 

SCF, SCA and energy at the feature, model and classification stages has consistently 

revealed that cognitive load information is concentrated in the frequency region from       

0 Hz to 1.5 kHz, reaching a peak in the region from 400 Hz to 1 kHz. Beyond 1 kHz the 

amount of cognitive load information contained in individual subband decreases with 

respect to frequency. This implies that an effective cognitive load classification system 

needs to emphasize the speech features in the frequency region (0-1.5) kHz.  

Different filterbanks were designed for each corpus to extract the cepstral coefficients 

and spectral centroid features for cognitive load classification by allocating the center 

frequencies and bandwidths of their filters in such a way as to have high frequency 

resolution around (0-1.5) kHz. In clean conditions, it was found that the designed 

filterbanks consistently provided a higher performance than three traditional perceptual 

filterbanks mel, Bark and ERB and the Hertz filterbank for the systems based on cepstral 

coefficients, spectral centroid amplitude feature, and fusion of spectral centroid frequency 

and spectral centroid amplitude features, evaluated on both corpora. In particular, when 

evaluated on the Reading and Comprehension corpus, the cepstral coefficients computed 

with the designed filterbank provide a 18.6%, 17% and 9.4% relative error rate reduction 

compared to the mel, Bark and ERB filterbanks respectively. The corresponding relative 

error rate reductions of the designed filterbank for the fusion system of SCF and SCA are 

10.3%, 14.9% and 17.1%. The Hertz filterbank is found to consistently produce the 

lowest performance for the system. 
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The success of the designed filterbanks over the other filterbanks indicates that 

having more filters in the low frequency region can emphasize the cognitive load 

information in this region and as such improves the performance of the classification 

system. Although this method of emphasizing the low frequency region is different from 

how it is emphasized in Chapter 4, where a larger weight is used, in both of these chapters 

the system performance is improved by emphasizing the low frequency region. These 

consistent observations strongly suggest that the low frequency region is very important 

for cognitive load classification.  

Furthermore, in noisy conditions, evaluated on the Stroop test corpus, the designed 

filterbank for extracting the cepstral coefficients is found to produce higher performance 

for the classification system than the mel, Bark, ERB, and Hertz filterbanks. In addition to 

this, the filterbank designed to extract the spectral centroid features is found to be more 

effective than the mel and Hertz filterbanks but less effective than the Bark and ERB 

filterbanks for the fusion of the SCF-based and SCA-based systems.  
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6. Chapter 6: Speech enhancement for 

cognitive load classification 

6.1 Introduction  

The performance of the cognitive load classification system significantly degrades in 

noisy conditions and the system becomes less applicable for industrial implementation. It 

is therefore necessary to study techniques that reduce the effect of noise. One potential 

method to achieve this is to employ speech enhancement techniques to preprocess noisy 

speech before feeding it into the system. It has been shown that the use of speech 

enhancement can increase the performance of the systems under noisy conditions in 

speech and speaker recognition applications [108-109]. Furthermore, speech enhancement 

is also useful in voice communication and hearing aids [110-111].  

Due to its wide range of applications, speech enhancement has attracted a large 

number of researchers studying this area over the last few decades. Many techniques have 

been introduced for speech enhancement such as spectral subtraction [112], Wiener 

filtering [113-114], statistical-models [115-116], and Kalman filtering [117-118]. Despite 

the availability of a large number of methods, speech enhancement is still a challenging 

problem due to the requirement for very high quality speech in voice communication 

systems.  

Among the methods that have been introduced for speech enhancement, those based 

on Kalman filtering are known to produce low musical tone and less distortion for 

enhanced speech [119]. Previous studies apply Kalman filtering in full-band noisy speech 

[117-118]. In this study, we propose a subband Kalman filtering method where the 

Kalman filtering is applied to subband speech.  

Empirical mode decomposition (EMD) has recently been developed as a tool for the 

analysis of non-stationary signal [120]. Empirical mode decomposition decomposes any 

signal into zero mean oscillating components, known as intrinsic mode functions. It has 

been shown previously that when white noise contaminated speech is decomposed by 

empirical mode decomposition, the speech and noise components are separated 

reasonably well [121]. In other words, speech dominates in some intrinsic mode 

functions, while noise dominates in the others. Hence in this study, we propose a speech 

enhancement method by applying weighting functions in individual intrinsic mode 

functions that are subject to the distribution of speech and noise.  
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In addition, the methods based on the discrete cosine transform (DCT) are known to 

be effective due to the high energy compaction ability of DCT [122]. A simple but 

effective method to enhance speech is to apply soft thresholding on noisy speech in order 

to suppress noise in the DCT domain [123-124]. In this method, a noisy speech frame in 

the DCT domain is split into a number of subframes. These subframes are categorized as 

either a signal-dominant subframe or a noise-dominant subframe. In previous studies, the 

thresholding process is applied only to noise-dominant subframes [123-124]. This can 

result in a large amount of noise remaining in the enhanced speech as the signal-dominant 

subframes are not de-noised. In this study, an improved soft thresholding method is 

proposed by applying the appropriate thresholds for both noise-dominant and signal-

dominant subframes. 

This chapter initially proposes two novel speech enhancement methods: a non-

uniform subband Kalman filtering method and an empirical mode decomposition based 

method. It then proposes an approach to improve the existing soft thresholding for DCT 

based speech enhancement method. The effectiveness of each of these methods is 

compared with other traditional speech enhancement methods using the objective 

measure of perceptual evaluation of speech quality (PESQ). Their effectiveness is then 

compared to each other in terms of their PESQ and processing time. Finally, the most 

suitable method for cognitive load classification is chosen and its usefulness in improving 

the performance of the cognitive load classification system under noisy conditions is 

investigated.    

6.2 Proposed speech enhancement methods  

The quality of enhanced speech can be evaluated by using either subjective or 

objective measures. Subjective measures are obtained from the human listening tests to 

estimate the speech quality based on rating scales [125]. Although this measure is very 

reliable, using it to evaluate speech quality is expensive and time consuming. As such, 

objective measures are often utilized to judge speech quality. Many objective measures 

have been introduced such as Itakura-Saito distortion, Articulation Index, signal to noise 

ratio (SNR), segmental SNR, and PESQ [125]. Among these, PESQ has the highest 

correlation to the subjective measure and has been widely used to evaluate enhanced 

speech [125]. PESQ scores range from 4.5 for highest quality of speech down to -0.5 for 

lowest quality of speech. In this section, the performance of speech enhancement methods 
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is evaluated based on the relative improvement of the PESQ of the enhanced speech 

(  from that of the noisy speech ( , expressed as [126] 

    %100
noisy

noisyenhanced

PESQ
PESQPESQ

     (6.1) 

All results reported in this section are obtained by carrying out the speech 

enhancement experiments on noisy speech, which is obtained by adding noise from the 

NOISEX-92 noise dataset [102] to clean speech from the EBU SQAM speech dataset 

[127]. This is done at five different SNRs i.e. 0, 5, 10, 15 and 20 dB. The speech dataset 

contains six speech files of six speakers, three of whom are female and three male, 

sampled at 8 kHz. The lengths of the files are between 17 and 20 seconds. A subset of 

seven noise types from NOISEX-92 noise dataset are used in this study, namely babble, 

pink, white, leopard, factory, F16, and buccaneer.  

6.2.1 Kalman filtering method  

6.2.1.1 Kalman filtering for speech enhancement  

The noisy speech is expressed as  

             (6.2) 

where , , and  are the noisy speech, clean speech, and noise signals 

respectively. The Kalman filtering technique assumes that clean speech can be described 

as an autoregressive (AR) process in which each speech sample is considered as the 

output of an all-pole linear system driven by an excitation signal , which is a zero-

mean white Gaussian process with variance :  

                                                (6.3) 

The noise is also assumed to be an AR process, expressed as 

                                                (6.4) 

wherein  is a white Gaussian process with variance . Let                  

, , 

and the AR parameters , . The equations (6.2), 

(6.3), and (6.4) can be reformulated in the form of a Kalman filtering process equation 

and measurement equation in the state space domain as follows 

                                                       (6.5) 

                                                                                         (6.6) 

where  
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,  ,                                              (6.7) 

 ,                               (6.8) 

with 

 ,                          (6.9) 

 ,                     (6.10) 

The enhanced speech  is obtained by Kalman filtering as below 

                                                     (6.11) 

                                                                    (6.12) 

       (6.13) 

          (6.14) 

      (6.15) 

The enhanced speech signal is the output of Kalman filtering after the prediction 

estimation. 

                                                     (6.16) 

             (6.17) 

wherein  is the enhanced speech,  is the Kalman gain and                                 

 is the predicted state-error 

correlation matrix.  is a sparse matrix with only two nonzero elements. That is      

 and .   

6.2.1.2 Traditional full-band Kalman filtering method 

Traditional speech enhancement methods apply Kalman filtering to the full-band 

speech [117] and hence it is referred to as full-band Kalman filtering in this thesis. In 

order to enhance speech using the Kalman filtering method, the coefficients of the 

autoregressive model,  need to be estimated in advance. The quality 

of the enhanced speech and the computation complexity of the method based on Kalman 

filtering are dependent on the order of this model, . In fact, the order  determines how 

accurately an autoregressive linear prediction model describes the spectral envelope of a 
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signal. An example of the spectral magnitude and spectral envelope of a 25 ms speech 

segment with p = 3 and p = 10 is given in Figure 6.1. It can be seen from this figure that 

the spectral envelope with larger order describes the spectral magnitude more accurately.  

 

 
Figure 6.1: Magnitude spectrum of a speech segment and magnitude response of its AR models              

with different orders. 

6.2.1.3 Proposed non-uniform subband Kalman filtering 

It is well-known that the frequency resolution of human hearing system is non-

uniform. This is usually described by the critical band or Bark scale. Based on the this 

property, some auditory filterbank models have been extensively researched and are used 

in subband speech enhancement [128-130]. In this section, a non-uniform subband 

Kalman filtering method is proposed. In this method, the speech signal is initially 

decomposed into different subbands using a gammatone filterbank whose frequency 

response matches the frequency response of the critical band model of the human 

auditory system [131]. Kalman filtering is then applied to individual subband signals 

independently. The final enhanced speech signal is obtained by combining the enhanced 

subband speech signals.  As the subband spectral envelope has less variation than the full-

band envelope, lower-order AR models are sufficient and hence only lower-order Kalman 

filtering will be required. This can help to reduce the computational complexity of the 

proposed non-uniform subband Kalman filtering method as depicted in Figure 6.2.   
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The noisy speech is initially decomposed into subbands, using a filterbank with M 

analysis filters. Assuming that the mth analysis filter has impulse response hm, then the 

subband speech of the mth band is   

                 (6.18) 

where the symbol ‘*’ represents the convolution operator. 

The Kalman algorithm is then applied to subband speech . The outputs of the 

Kalman filters  are then passed through the corresponding synthesis filter  to obtain 

the reconstructed subband signal . The final enhanced speech signal is then obtained 

by combining the reconstructed signals in all the subbands, given as: 

                (6.19) 

 
Figure 6.2: Diagram of the proposed subband Kalman filtering method. 

 

The gammatone filters, which are used as analysis filters, are implemented using FIR 

filters. The analysis filter for the mth subband is obtained using the following expression,  

nTbfenTanh cm
nTbBWN

mm
m 2cos21           (6.20) 

where fcm is the center frequency of the mth subband, T is the sampling period, n is the 

discrete time sampling index and BWm is the bandwidth of the mth filter. The constant      

b = 1.65 and values for am were selected for each filter such that the filter gain was 

normalized to 0 dB. The number of subbands M was chosen as 18 for a sampling rate of 8 

kHz. In order to achieve perfect reconstruction and linear phase characteristics, the 
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synthesis filters are designed as time-reversed impulse responses of the corresponding 

analysis filters, i.e. . 

In this study, all of the autoregressive (AR) parameters of speech are estimated from 

the pre-enhanced speech, which is obtained by partly removing noise in noisy speech 

using the spectral subtraction method [112], as seen in Figure 6.2. This reduces the noise 

level in the noisy speech which in turn reduces the estimation error of the estimated 

parameters. The AR parameters of the proposed subband method are estimated in each 

subband as Kalman filtering is applied individually to each subband. Given a 25 ms frame 

of speech that overlaps its neighbor by 15 ms, the autoregressive parameters of speech 

for each subband are estimated using the well established 

Levinson-Durbin algorithm [132]. This algorithm is also used to estimate the AR 

parameters of the noise . This is performed in the frames of non-

speech segments. In this work, the orders of the full-band autoregressive model of speech 

and noise are  = (10, 5) as per [118]. The performance of the traditional full-band 

method is used as a reference to evaluate the performance of the proposed non-uniform 

subband Kalman filtering method. The orders of the subband AR models of speech and 

noise used for this are  = (3, 2), which are significantly less than those of the 

corresponding full-band models. This has the added benefit of reducing the computation 

complexity of the proposed subband Kalman filtering method. 

The average relative improvement in terms of PESQ ( ) across all SNRs tested, i.e. 0, 

5, 10, 15, and 20 dB of the enhanced speech using the traditional full-band and proposed 

subband Kalman filtering methods are reported in Figure 6.3.  

 
Figure 6.3: Average  of full-band (FK) and subband Kalman filtering (NSK) methods. 
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It can be seen from Figure 6.3 that the proposed subband method consistently 

provides a significantly higher  than the traditional full-band method. It provides an 

average improvement of  over all noise types of 11.4% and a maximum improvement of 

15.9% for pink noise compared to the full-band method.   

6.2.2 Empirical mode decomposition based method 

6.2.2.1 Empirical mode decomposition 

Empirical mode decomposition (EMD) was recently pioneered by Huang et. al [120] 

as a new and powerful data analysis method for non-stationary signals. It is a data-

adaptive decomposition method in which any complicated signal can be decomposed into 

zero mean oscillating components, named intrinsic mode functions (IMFs). These IMFs 

are signals satisfying two conditions: (1) the number of extrema and the number of zero 

crossings in the whole signal must differ at most by one; and (2) the mean value of the 

envelope defined by the local maxima and the envelope defined by the local minima at 

any point is zero [120]. The second condition modifies the classical global requirement of 

the first condition to a local one. The sifting process described in [120] was used in this 

thesis to obtain the IMFs. The sifting process of a signal  is conducted by the 

following steps: 
 

1. Identify the extrema of , both maxima and minima.  

2. Generate the upper envelope  and lower envelope  from the maxima and 

minima points of  by applying cubic spline interpolation.  

3. Determine the mean envelope  

                                            

4. Determine the new series  by removing the low frequency component 

 from signal  

                                          .  

5. Check if  is approximately zero. If so,  is the first intrinsic mode 

function. Otherwise use  as a new data set replacing and repeat steps   

1-5 until ending up with an intrinsic mode function.  

Once the first intrinsic mode function  is derived, , the 

corresponding residue containing the information about the components of longer periods 

is determined as: 

 .  
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This residue is considered as a new signal and subject to another sifting process. The 

procedure is repeated for subsequent residues until  is less than a predetermined 

threshold or is a monotonic function from which no more intrinsic mode functions can be 

derived. At the end of the decomposition process, the data  will be represented as a 

sum of N intrinsic mode functions and the last residue signal.   

              (6.21)  

Figure 6.6 in Section 6.2.2.2 shows a diagram of empirical mode decomposition by 

sifting, combined with the process of the proposed speech enhancement method based on 

empirical mode decomposition. 

6.2.2.2 Proposed speech enhancement method based on empirical mode 

decomposition 

The procedure of estimating the intrinsic mode functions presented in Section 6.2.2.1 

can be described as a step by step process of subtracting the highest oscillating 

components. Therefore, the lower order intrinsic mode functions contain higher 

frequencies  and thus have a smaller time scales. In this study, the time scale refers to the 

distance between two consecutive points where the signal crosses its mean value. The 

time scale of noise is significantly smaller than that of speech because noise randomly 

varies while speech is quasi-periodic. This is illustrated in Figure 6.4 which plots a speech 

and a white noise segment whose means are zero. The instantaneous time scales at 

particular moments are shown as the distance between two consecutive points where the 

signals cross zero. It can be seen from this figure that the average time scale of the speech 

segment is significantly larger than that of the noise segment.  

Due to the above-mentioned characteristics, when noisy speech is decomposed the 

noise components are mainly centered in the lower order intrinsic mode functions [121, 

123]. In the case of a noisy speech contaminated by white noise, it was found that the first 

two intrinsic mode functions mainly contain noise while the third and the fourth ones 

mainly contain speech [121]. An example of speech contaminated by white noise at 5 dB 

and its first four intrinsic mode functions is shown in Figure 6.5a. In the case of speech 

contaminated by other noise such as pink, factory and F16, there is a lack of studies 

investigating how speech and noise are distributed in the intrinsic mode functions. It is 

assumed, however, that noise tends to be distributed mainly in lower order intrinsic mode 

functions and speech tends to be distributed more in higher order functions. This is 

because the time scale of noise is smaller than that of the speech. In other words, to some 
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extent empirical mode decomposition makes it possible to separate the high frequency 

noise from the mainly low frequency speech. 

 
Figure 6.4: An example of (a) speech segment with a time scale of 2.63 ms (b) noise segment                   

and (c) The magnified view of (b) in the region (15-20) ms showing a time scale of 0.25 ms. 

 

 

Figure 6.5: (a) Noisy speech and its first four intrinsic mode functions (IMF)                                               

(b) The gains of the first four IMFs. 
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As discussed, the distributions of speech power and noise power in different order of 

intrinsic mode functions are very different. We exploit this property in this study by 

applying a weighting scheme where different weights or gains are applied to different 

intrinsic mode functions in order to reduce the noise. To achieve this task it is intuitive 

that a larger gain should be applied to intrinsic mode functions with larger speech power. 

On the contrary, a smaller gain should be applied to intrinsic mode functions with a 

smaller speech power. Hence we propose to use the ratio between estimated clean speech 

power to the estimated noisy speech power computed on each frame of each intrinsic 

mode functions as the gain as expressed in equation 6.23, in a similar manner to the 

Wiener filter gain [133]. Let us assume that each intrinsic mode functions (IMF) obtained 

from the decomposition of noisy speech consists of a clean speech component and a noise 

component as follow  

,                             (6.22) 

where  is the ith intrinsic mode function of noisy speech;  and  are the clean speech 

and noise components of  respectively; i = 1,…,N, is the IMF index; and n is the sample 

index. N is the number of IMFs obtained from the decomposition of noisy speech. 

The gain for each intrinsic mode functions is chosen to be 

m
mmk si

i 2
Ci

2

                                     (6.23) 

where m is the frame index,  is the estimated power of the mth frame of the ith IMF 

of noisy speech,  is the estimated power of the clean speech component in the 

corresponding frame and IMF. Here  is estimated by subtracting the noise power 

from the noisy speech power   

       (6.24)  

where  is the estimated power of the noise component in the mth frame of ith 

intrinsic mode function. The max operation ensures that the estimated clean speech power 

is always non-negative.  

It can be seen from equation (6.23) that the gain   [0, 1].  is zero for a 

non-speech frame where  = 0, and  is one for a frame where noise does not 

exist, i.e. .  
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The weighted intrinsic mode function  and the residue  for the mth frame 

are obtained by weighting the corresponding noisy intrinsic mode function and residue as 

below  

                                                                              (6.25) 

                                                                             (6.26) 

The final enhanced speech signal is obtained by combining the weighted IMFs and 

the last residue as  

nrnxns N

N

i
i ˆˆˆ

1                                                                              
(6.27) 

where N is the number of intrinsic mode functions obtained when performing empirical 

mode decomposition. The typical value of N used in our experiments is within the range 

[10, 13]. An outline of the proposed speech enhancement method based on empirical 

mode decomposition is described in Figure 6.6.  

  
Figure 6.6: Diagram of the proposed empirical mode decomposition method. 

 

An illustration of speech contaminated by white noise at 5 dB and the gain of the first 

four intrinsic mode functions are shown in Figure 6.5b. It can be seen in this figure that 

the gain of the first intrinsic mode function is significantly smaller than the gain of the 

other functions. Furthermore, the gain of the second intrinsic mode function is smaller 

than those of the third and the fourth functions. As discussed previously, the first and the 

second intrinsic mode functions mainly contain noise while the third and the fourth 
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intrinsic mode functions mainly contain speech. Assigning small gains to the first and 

second intrinsic mode functions and large gains to the third and fourth intrinsic mode 

functions can reduce the noise level in noisy speech.    

The effectiveness of the proposed speech enhancement method based on empirical 

mode decomposition can be seen by observing the waveforms and spectrograms of the 

clean, noisy, and enhanced speech in Figures 6.7 and 6.8. The speech in this example is 

contaminated by white noise at 5 dB. It can be seen from Figure 6.7 that most of the noise 

in the non-speech segments of noisy speech is removed. In addition to this, Figure 6.8 

shows that most of the noise in both speech and non-speech segments is removed.   

 

Figure 6.7: The waveforms of (a) clean speech (b) noisy speech and (c) enhanced speech.  

 

The relative improvement of the PESQ ( ) of the enhanced speech based on the 

proposed empirical mode decomposition method averaged over all SNRs tested is 

presented in Table 6.1.  
 

Table 6.1: Average  (%) of the proposed method using empirical mode decomposition  

Noise Pink White Leopard Factory F16 Buccaneer Babble Average 

 (%) 4.3 10.0 4.5 4.7 1.8 9.5 15.7 7.2 

 

It can be seen from Table 6.1 that the proposed speech enhancement method based on 

empirical mode decomposition consistently produces an improvement of PESQ compared 



131 
 

to the noisy speech. In particular, it produces an increase of  by 7.2% in average and 

15.7% in maximum (for speech contaminated by babble noise).     

 

Figure 6.8: The spectrograms of (a) clean speech (b) noisy speech and (c) enhanced speech.  

6.2.3 Speech enhancement in DCT domain 

     In the time domain, a noisy speech signal x(n) can be considered as a sum of clean 

speech s(n) and noise v(n), as in equation (6.2). For speech enhancement methods based 

on the discrete cosine transform (DCT), the first step is to convert the speech signal from 

the time domain to the DCT domain. The kth coefficient of the N-point DCT of signal x(n) 

is defined as  
1

0
12

2
cos1 N

n
k kn

N
nx

N
kX       (6.28) 

where , ,  for .  
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Noisy speech is expressed in the DCT domain as  

X(k) = S(k)+V(k) (6.29) 

where X(k), S(k) and V(k) are the kth DCT coefficients of noisy speech, clean speech and 

noise signal respectively.  

Noisy speech enhancement is performed in the discrete cosine transform domain in 

order to obtain the DCT coefficient of the enhanced speech kŜ . The enhanced speech 

signal in the DCT domain is transformed back to the time domain using the inverse DCT:  
1

0
12

2
cosˆ1ˆ

N

k
k kn

N
kS

N
ns  (6.30) 

6.2.3.1 Traditional soft thresholding method 

In traditional soft thresholding method of DCT speech enhancement, the noisy 

speech signal is segmented into 32 ms frames containing 256 samples. A 512 point DCT 

is taken on each frame. The 512 DCT coefficients are then divided into 8 subframes 

consisting of 64 coefficients each as shown in Figure 6.9. Each subframe is categorized to 

be either signal-dominant or noise-dominant, based on the comparison between signal 

power and noise power [124]. In particular, a subframe is categorized as a signal-

dominant subframe if it satisfies the following condition  

2
264

164
1

v
k

kX ,   (6.31) 

where 2
v
 
is the noise power, Xk is the kth DCT coefficient in subframe. If this condition is 

not satisfied the subframe is categorized as noise-dominant. 

 
Figure 6.9: An illustration of creating the subframes. 

 

In the analysis of Salahuddin et al. [124], which is performed in the TIMIT database, 

the absolute values of DCT coefficients in each subframe of noisy and clean speech are 

sorted in an ascending order. By comparing the sorted absolute DCT coefficients of noisy 

speech and clean speech they found that for the noise-dominant subframe, the difference 

between discrete cosine transform coefficients of noisy speech and those of clean speech 

increases in an approximately linear fashion with respect to the sorted index of the 

coefficient. Therefore in the traditional soft thresholding method for DCT presented in 
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[124], the enhanced speech is obtained by applying a linear soft thresholding function to 

the noisy speech. However for the signal-dominant subframe, it was found that the 

difference between the discrete cosine transform coefficients of noisy speech and those of 

clean speech is not significant. Hence in the traditional method, the discrete cosine 

transform coefficients of the enhanced speech are set to be the same as those of the noisy 

speech for the signal-dominant subframes. The traditional soft thresholding for DCT 

speech enhancement can be expressed as 

otherwisemjXXsign
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where  is the DCT coefficient of the enhanced speech, j is the sorted index of  in 

the subframe, and m is a constant  
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where  is a constant whose value is 0.8 [124].  

6.2.3.2 Proposed improved soft thresholding method  

In our analysis conducted on the EBU SQAM and NOISEX-92 datasets, it was 

observed that for noise-dominant subframes, the difference between the sorted absolute 

values of DCT coefficients of noisy speech and those of clean speech increases in an 

approximately linear fashion with respect to the index of the DCT coefficients, as found 

in [124]. This is illustrated in Figure 6.10a, which plots the average absolute value of 

DCT coefficients of clean speech and speech contaminated by white noise at 5 dB 

computed in the noise-dominant subframes across twenty seconds of speech. In our 

proposed improved soft thresholding method, the DCT coefficients of the enhanced 

speech are obtained by applying the linear soft thresholding to those of the noise-

dominant subframes of noisy speech, in a similar manner to the traditional soft threshold 

method. For the signal-dominant subframes, it was found that the difference between 

noisy DCT coefficients and clean DCT coefficients, while less than the different in noise-

dominant subframes, is significant. This is illustrated in Figure 6.10b, which shows the 

average absolute value of DCT coefficients for clean speech and noisy speech at 5 dB, 

computed in the signal-dominant subframes across twenty seconds of speech. This 

implies that there is a large amount of noise existing in the signal-dominant subframes. If 

thresholding is not applied to these signal-dominant subframes, this noise will remain in 
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the resultant enhanced speech, and hence reduce its quality. If thresholding is 

inappropriately applied, however, the speech signal will be degraded. An appropriate 

threshold level in signal-dominant subframes should provide a good compromise between 

noise removal and speech distortion.  

 
Figure 6.10: Average of the absolute values of DCT coefficients in ascending order of clean and noisy 

speech of (a) noise-dominant subframes and (b) signal-dominant subframes.  

 

In this study, an improved soft thresholding method is proposed where thresholding 

is applied to the DCT coefficients in noise-dominant subframes similar to the traditional 

thresholding method. A soft thresholding is also applied to coefficients in the signal-

dominant subframes with a proper threshold level selected so as not to degrade the speech 

signal. The proposed soft thresholding method is given as follows  
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where ms and mn are constants determined as 
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where  and  are constants that control the amount of noise to be removed from 

signal-dominant and noise-dominant subframes in the DCT domain respectively.  

From equations (6.34 - 36), it can be understood that larger values of  and  will 

cause more noise being removed and result in more distortion for the speech signal. In 

this study,  is set to 0.8, according to [123-124]. It is also expected that  should be 

less than  as the amount of noise that needs to be removed from signal-dominant 

subframes is less than that from noise-dominant subframes. In this study, the value of  

was empirically chosen in order to produce the highest relative improvement of PESQ ( ) 

for the enhanced speech. The value of is varied from 0 to 0.8 with the step size of 0.1 

and speech enhancement based on the proposed soft thresholding method was carried out 

for each value of . The average  across all SNRs and noise types used of the enhanced 

speech are graphed against  in Figure 6.11.  

 
Figure 6.11: Average  (%) of the proposed thresholding method with various . 
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According to this figure,  = 0.3 produces the highest average  for the enhanced speech 

and hence it was chosen to implement the proposed soft thresholding method. The 

average  over all SNRs of the enhanced speech using the traditional and proposed 

improved soft thresholding speech enhancement methods is shown in Figure 6.12.  

 
Figure 6.12: Average  (%) of the traditional soft thresholding DCT (STDCT)                                              

and proposed improved soft thresholding DCT (ISTDCT) methods.  

 

It can be seen in Figure 6.12 that the proposed thresholding method consistently 

provides a higher  than the traditional thresholding method. The proposed method 

provides an average  increase of 1.6% over all noise types used and maximum increase 

of 2% for buccaneer noise compared to the traditional method. 

6.2.4 Comparison of the proposed speech enhancement methods  

The effectiveness of a speech enhancement method depends on two important 

factors, namely the quality of the enhanced speech and the processing time. The purpose 

of estimating cognitive load (CL) levels is to dynamically adjust the workload imposed 

on users. Therefore it is necessary to ensure that CL levels are estimated accurately and 

quickly. This implies that an effective speech enhancement method for cognitive load 

classification needs to produce high quality enhanced speech in order to improve the 

accuracy of the system. In addition, the required processing time needs to be short so that 

the CL level can be recognized in real-time or close to real time.  

For the purpose of seeking the best speech enhancement method for a cognitive load 

classification application, this section compares the effectiveness of the non-uniform 
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subband Kalman filtering method, empirical mode decomposition based method, and 

improved soft thresholding based on DCT method in terms of the above-mentioned two 

factors. The average relative improvement of PESQ ( ) under all noisy conditions i.e. 

under the effect of seven noise types and five signal to noise ratios and processing time as 

a factor of real time based on Intel Core 2 Duo 2.5 GHz processor of these methods are 

listed in Table 6.2. 
Table 6.2: Average  (%) and processing time of the three proposed methods. 

Methods  (%) Processing time (x real time) 

Non-uniform subband Kalman filtering 28.3 203 

Empirical mode decomposition 7.2 48.8 

Improved soft thresholding DCT 20.4 13.2 

 

It can be seen from Table 6.2 that among the proposed methods, the one based on 

empirical mode decomposition is the worst method as it produces significantly lower 

quality of enhanced speech compared to the other two methods and requires considerably 

longer processing time compared to the improved soft thresholding discrete cosine 

transform method. Furthermore, the discrete cosine transform method produces 7.9% 

lower  than the Kalman filtering method. However, it requires significantly less 

processing time than the Kalman method. In relative terms, the use of soft thresholding 

DCT method saves 93.5% processing time compared to the use of subband Kalman 

filtering method. Taking into account the quality of the enhanced speech and the 

processing time as discussed above, the improved soft thresholding DCT method seems 

to be more suitable for the task at hand than the subband Kalman filtering and empirical 

mode decomposition based methods for the purpose of cognitive load classification.  

6.3 Incorporating the thresholding DCT module into CL 

classification system  

This section investigates the effectiveness of the proposed improved soft thresholding 

DCT speech enhancement method in increasing the performance of the cognitive load 

classification system under noisy conditions. All the experiments in this section are 

performed on the Stroop test corpus. Furthermore, only the test speech is noisy and all 

training data is clean. This is typical in practical scenarios as the training speech can be 

recorded in relatively noise free conditions. The incorporation of the speech enhancement 

module to the system is shown in Figure 6.13. The noisy speech in this experiment is 



138 
 

obtained by adding the noise from the NOISEX-92 database to the clean speech at five 

SNR levels namely 0, 5, 10, 15, and 20 dB. A subset of seven types of noise, namely 

pink, white, leopard, factory, F16, buccaneer, and babble are used in this study. The 

classification system used in this section is the same as the full-band system described in 

Section 4.3.2. In addition, the speech features used in all classification experiments in this 

section are the MFCC features.  

 
Figure 6.13: Diagram of the system incorporating speech enhancement. 

 

The accuracy of the classification system averaged across all SNRs, under the effect 

of individual noise types, with and without incorporating the speech enhancement module 

using the improved soft thresholding DCT method is presented in Table 6.3. The average 

relative reduction of error rate when using the proposed thresholding DCT speech 

enhancement method is also presented in this table.  

Table 6.3: Average accuracy of the system in noisy conditions over all SNRs. 

 

Noise type 

 Average accuracy (%) Average relative 

reduction of error rate by 

using DCT speech 

enhancement (%) 

Without speech 

enhancement 

With DCT speech 

enhancement 

Pink 58.0 59.0 2.5 

White 54.3 55.7 3.1 

Leopard 70.9 71.8 3.1 

Factory 55.8 56.7 2.3 

F16 57.8 59.4 4.3 

Buccaneer 53.9 54.9 2.6

Babble  60.1 61.5 3.3 

Average 58.7 59.9 3.0
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It can be seen from Table 6.3 that the proposed DCT speech enhancement method 

improves the performance of the classification system under the effect of all noise types 

tested. It provides an average relative error rate reduction of 3.0% over all tested noise 

and a maximum relative error rate reduction of 4.3 % for F16 noise.  

The average accuracy of the system in noisy conditions across all noise types tested 

at an individual SNR, with and without using the proposed DCT speech enhancement 

method, is presented in Table 6.4. The average relative error rate reduction using the 

improved soft thresholding DCT method is also shown in this table.  

Table 6.4: Average accuracy of the system in noisy conditions across all noise types tested. 

 

SNR (dB) 

Average accuracy (%) Average relative reduction 

of error rate using DCT 

speech enhancement (%) 

Without speech 

enhancement 

With DCT speech 

enhancement 

0 43.9 45.3 2.6 

5 51.4 52.7 2.8 

10 60.9 61.8 2.5 

15 67.1 68.2 3.3 

20 70.2 71.3 3.9 

Average 58.6 59.9 3.0 

 

It can be seen from Table 6.4 that the use of the proposed improved soft thresholding 

DCT speech enhancement method provides higher accuracy for the classification system 

in noisy conditions at all levels of SNR tested. The relative error rate reduction when 

using the DCT speech enhancement method is quite consistent for various SNRs and the 

maximum relative error rate reduction is 3.9% for a signal to noise ratio of 20 dB.  

In addition, the accuracies of the system obtained for each signal to noise ratio and 

each noise type (appendix A) indicate that the proposed DCT method provides a relative 

error rate reduction of up to 7.5% with F16 noise at 20 dB SNR.  

6.4 Summary  

This chapter has proposed three speech enhancement methods. Two of them are 

novel methods namely the non-uniform subband Kalman filtering and empirical mode 

decomposition based methods. The third method improves the existing soft thresholding 

for discrete cosine transform (DCT) speech enhancement method. It was found that the 

proposed subband Kalman filtering method provides a 11.4% increase of , i.e. the 
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relative improvement of PESQ compared to noisy speech, compared to the traditional 

full-band Kalman filtering method. The proposed empirical mode decomposition based 

method yields a 7.2% of . The proposed improved thresholding DCT method provides a 

1.6% increase in  when compared to the traditional thresholding method.  

Among the three proposed methods, the subband Kalman filtering method was found 

to provide the highest relative improvement of PESQ and the thresholding DCT method 

was found to provide 7.9% lower  than the Kalman filtering method. However, in terms 

of processing time, the use of the thresholding method saves 93.5% processing time 

compared to the Kalman filtering method. Therefore, the improved soft thresholding 

discrete cosine transform method was chosen to increase the performance of the cognitive 

load classification system under noisy conditions. It was indicated that the use of the DCT 

method provides an average relative error rate reduction of 3.0% for the system under the 

effect of seven noise types and five levels of SNR tested. In particular, it provided a 

maximum relative error rate reduction of 7.5% under the effect of F16 noise at 20 dB 

SNR. 
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7. Chapter 7: Conclusion and Future work 
 

 

7.1 Conclusion  

This thesis presents research in automatic cognitive load classification based on 

speech with the aim of proposing techniques to improve its performance in both clean and 

noisy conditions. This research provides a number of novel contributions including:  

(i) the proposal of the use of new features to complement features in the existing 

classification systems; 

(ii) the investigation of the distribution of cognitive load information across 

different frequency bands;  

(iii) the proposal of the use of the multi-band approach for cognitive load 

classification and the investigation of different weighting schemes for a 

multi-band classification system;  

(iv) the design of filterbanks specifically for classifying cognitive load;  

(v) the proposal of speech enhancement methods to improve the performance of 

the classification system in noisy conditions.  

7.1.1 Implementation of human listening test  

In order to validate the supposition that cognitive load information is conveyed in 

speech and to study what sort of speech cues human use to identify the cognitive load 

levels, a human listening test was implemented in which the participants were asked to 

detect the cognitive load levels of speakers by listening their speech. The ability of 

subjects to accurately classify the cognitive load levels implied that there are cognitive 

load cues contained in speech. Furthermore, the feedback from the participants in the test 

indicated that breath pattern, speech rate, the use of filler sounds such as ‘uh’ and ’ah’, 

and the intonation of the utterance are the most important cues used to identify the 

cognitive load levels by humans. The usefulness of the intonation in this test supported 

the effectiveness of the shifted delta feature of the pitch for the classification system, 

presented in this thesis as well as in the previous study [3, 5].  
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7.1.2 The use of spectral based speech features  

The study of the effectiveness of different speech features for CL classification was 

presented in Chapter 3. The speech features were categorized as the source-based features 

such as pitch, intensity, and SMFCC (source MFCC); filter-based features such as 

formant frequencies, FMFCC (filter MFCC); and combined features i.e. features relating 

to both the voice source and the vocal tract filter of human speech production system such 

as MFCC, group delay (GD) and frequency modulation (FM). It was found that although 

filter-based features are somewhat better at classifying than source-based features, both of 

these features are effective for the classification. Therefore an effective classification 

system needs to utilize both types of features. Furthermore, this suggested that in the 

source-filter model of human speech production, the filter component is more important 

than the source component in characterizing the variation of cognitive load.   

The use of the spectral centroid features, namely spectral centroid frequency (SCF) 

and spectral centroid amplitude (SCA) for cognitive load classification was proposed in 

Section 3.5. It was found that both of these features produced accuracies comparable to 

the traditional MFCC features. In addition, fusion of either the spectral centroid frequency 

based system or the spectral centroid amplitude based system with the MFCC-based 

system consistently outperformed a solely MFCC-based system. In particular, fusion of 

the spectral centroid frequency based system and the spectral centroid amplitude based 

system with the MFCC-based system produced a relative reduction in error rate of 8.9% 

and 31.5% respectively, compared to the MFCC-based system performed on the Stroop 

test corpus. These results indicated that cognitive load information contained in the 

spectral centroid features are complementary to that contained in the MFCC features. 

Therefore the spectral centroid features can be used to provide additional cognitive load 

information to improve the performance of the traditional MFCC-based system. Among 

all the features used in Chapter 3, the spectral features namely MFCC, spectral centroid 

frequency, and spectral centroid amplitude were found to be the most effective and hence 

were chosen for all further studies reported in this thesis.  

7.1.3 Analysis of the distribution of cognitive load information 

In order to capture cognitive load information effectively for the purpose of 

improving the performance of the classification system, it is crucial to know how 

cognitive load information is distributed across the different frequency bands. The 

preliminary investigation of cognitive load information distribution in a small number of 
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mel subbands i.e. two bands or three bands, whose bandwidths are equal in the mel 

frequency scale, indicated that the low frequency mel subband contains significantly more 

CL information than the high frequency mel subband. Furthermore, the rigorous and 

systematic investigation of the cognitive load information distribution in a large number 

of uniform subbands i.e. 20 bands or 32 bands, whose bandwidths are equal in the linear 

frequency scale presented in Section 5.3 showed that cognitive load information is mainly 

concentrated in the region approximately from 0 Hz to 1.5 kHz, reaching a peak in (400-

1000) Hz. Beyond 1 kHz, the amount of cognitive load information contained in 

individual subbands decreases with respect to frequency. The results found in this study 

strongly suggest that spectral information in the frequency region of (0-1.5) kHz needs to 

be emphasized to improve cognitive load classification results.  

7.1.4 Multi-band approach and the effectiveness of weighting schemes 

Chapter 4 investigated the effectiveness of the multi-band approach and compared it 

with that of the traditional full-band approach for cognitive load classification. It was 

found that the multi-band approaches (both feature combination and likelihood 

combination) were more effective than the full-band approach in both clean and noisy 

conditions. In particular when performed on the Stroop test corpus, the 2-band multi-band 

systems based on likelihood combination with an accuracy weighting scheme and the 

feature combination method reduced the relative error rate by 9.5% and 17% respectively, 

compared to the traditional full-band system in clean conditions. The corresponding 

relative error rate reductions in noisy conditions are 3.9% and 9.9%. 

Furthermore, this chapter investigated the effectiveness of different weighting 

schemes, namely accuracy and SNR weighting schemes, for a multi-band classification 

system based on likelihood combination. It was found that the accuracy weighting 

scheme was more effective than the non-weighting scheme in clean conditions and both 

SNR and non-weighting schemes in noisy conditions. This indicated that the performance 

of the likelihood combination multi-band classification system can be improved by 

assigning a larger weight to emphasize the speech features in the low frequency band 

where cognitive load information is mainly concentrated. 

7.1.5 Designing effective filterbanks to extract spectral features 

As cognitive load information was found to be mainly concentrated in the low 

frequency region, a novel filterbank design was proposed specifically for cognitive load 

classification which emphasizing the spectral information in the low frequency region. 
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This filterbank was designed to have a high frequency resolution in the low frequency 

region by allocating a large number of filters in this region. It was shown that the 

designed filterbank consistently performs better than the existing perceptual filterbanks 

(mel, Bark and ERB) and the Hertz filterbank for the system based on cepstral 

coefficients in both clean and noisy conditions.  

Furthermore, for the system based on the fusion of the classification results of the 

spectral centroid frequency based and spectral centroid amplitude based systems, the 

designed filterbank performed better than the mel, Bark, ERB and Hertz filterbanks in 

clean conditions. In noisy conditions, the fusion system based on the designed filterbank 

performed better than those based on the mel and Hertz filterbanks but worse than those 

based on the Bark and ERB filterbanks.  

It was found that spectral features with six dimensions produced the highest 

performance for the system irrespective of the feature type, and both very high and very 

low dimensional features degraded the system. Hence, six dimensional spectral features 

were used in the study of filterbank design.  

7.1.6 Proposed speech enhancement methods  

Section 6.2 proposed two novel speech enhancement methods, namely the non-

uniform subband Kalman filtering and empirical mode decomposition based and one 

separate approach to improve the existing soft thresholding for discrete cosine transform 

speech enhancement method. This was done with the aim of reducing the effect of noise 

in order to improve the robustness of the CL classification system under noisy conditions. 

It was found that the proposed non-uniform subband method provided on average an 

improvement of , i.e. the relative PESQ improvement, of 11.4% compared to the 

traditional full-band Kalman filtering method. Furthermore, the proposed empirical mode 

decomposition based method produced an average relative PESQ improvement of 7.2% 

compared to the noisy speech. The proposed improved soft thresholding method provided 

on average an improvement higher relative improvement of PESQ than the traditional soft 

thresholding method.  

Among the three proposed speech enhancement methods, the non-uniform subband 

Kalman filtering method was found to provide the largest relative improvement of PESQ. 

The improved soft thresholding method was found to provide slightly less relative PESQ 

improvement than the non-uniform subband method. However, it saved 93.5% processing 

time compared to the subband Kalman filtering method. As such, the improved soft 

thresholding method was chosen to improve the quality of speech and increase the 
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performance of the cognitive load classification system under noisy conditions. It was 

indicated in Section 6.3 that the use of the proposed improved soft thresholding method 

based on the discrete cosine transform reduced the relative error rate by 3.0% when 

averaged over the seven noise types and five SNRs tested. In particular, it reduced the 

relative error rate by a maximum of 7.5% for the system under the effect of the F16 noise 

at 20 dB SNR. 

 

7.2 Future work 
 

 This thesis has found that cognitive load (CL) information is mainly concentrated 

in low frequency region. Two methods are proposed to emphasize the contribution 

of speech features in this region in order to improve the performance of the 

system. A related investigation suggested by this is to examine the temporal 

dependence of cognitive load specific information. An appropriate approach to 

emphasize the contribution of speech features in segments that is more important 

for CL classification is expected to further improve the performance of the 

system.  

 The usefulness of the shifted delta features in this study indicates that temporal 

variation of speech features is very important for classifying cognitive load. 

However the shifted delta features can only capture the temporal variation to some 

extent. By developing other techniques to describe the temporal variation of 

speech feature more effectively, the performance of the cognitive load 

classification system can be further improved.  

 The filterbanks designed in this study perform well with speech  sampled at 16 

kHz where the signal bandwidth ranges from 0 Hz to 8 kHz. These filterbanks 

may not be very effective for speech collected through a telephone channel as the 

bandwidth of this medium is approximately 300 Hz to 3400 Hz. Designing 

filterbanks for CL classification based on telephone speech is an interesting area 

for future research as one of the common methods to capture speech for CL 

classification is from a telephone. Furthermore, the designed filterbanks in this 

thesis were optimized separately for each of the two databases. An interesting 

extended study would be to develop a common filterbank for two databases. This 

may be done by designing a filterbank based on a development dataset which is 

independent to the traning and test datasets.   
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 The two databases used in this thesis were collected in a laboratory through a 

microphone and each of them contains the speech of fifteen speakers. The factors 

unrelated to cognitive load such as speaker variation and channel mismatch 

therefore have been minimized or eliminated. In practical scenarios, speech data 

are usually collected from a very large number of speakers and through many 

different channel types such as a telephone and microphone and hence the effect 

of the above-mentioned factors would be much more serious. In other words, there 

is a gap between the databases used in this study and those collected in more 

realistic scenarios. Hence, although the techniques proposed in this thesis are 

promising in terms of improving the performance of the cognitive load 

classification system, they should be validated by using other databases that 

contain speech from a larger number of speakers and are collected from different 

channels.   

 This thesis focused only on a single back-end classifier. Alternative classification 

techniques including Hidden Markov Model (HMM), simple linear kernel Support 

Vector Machine (SVM), hybrid SVM-GMM which accepts the likelihood scores 

from GMM as inputs for SVM, and a fusion approach which integrates GMM, 

SVM and SVM-GMM systems together should hence be explored.  
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Appendix A 

Relative error rate reduction of the 
cognitive load classification system using 
the improved soft thresholding discrete 
cosine transform speech enhancement 

method 
 

SNR 

Noise 
0 dB 5 dB 10 dB 15 dB 20 dB Average 

Pink 3.0 2.0 2.7 3.2 1.6 2.5 

White 5.5 1.0 1.1 1.3 6.7 3.1 

Leopard 3.0 3.3 1.7 4.4 3.3 3.1 

Factory 1.8 1.8 1.2 3.6 3.3 2.3 

F16 2.1 1.9 5.4 4.7 7.5 4.3 

Buccaneer 1.2 3.2 2.3 2.5 3.6 2.6 

Babble  1.8 6.1 3.4 3.7 1.7 3.3 

Average 2.6 2.8 2.5 3.3 4.0 3.0 
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